
Importance Sampling Methods for Estimating Convex Risk

Measures in Portfolio Credit Risk Models

Jörn Dunkel

Universität Augsburg

Stefan Weber

Cornell University

May 30, 2007∗

Abstract

The importance sampling method exponential twisting is used to estimate Utility-based
Shortfall Risk (SR) in two standard portfolio credit risk models. SR belongs to the class of
convex risk measures and thus avoids the shortcomings of the industry standard Value-at-Risk
(VaR). Our analysis demonstrates that standard Monte-Carlo (MC) techniques, originally
developed for VaR, can be generalized to efficiently estimate SR in the framework of the
portfolio models CreditRisk+ and CreditMetrics. Numerical simulations of test portfolios
illustrate the good performance of the proposed estimators.
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1 Introduction

The reliable measurement of credit default risk represents one of the key issues for financial

institutions and regulating authorities. Modern risk management employs portfolio models, as

e.g. CreditMetrics (Gupton et al., 1997) and CreditRisk+ (Cre, 1997), that take into account

potential dependencies among the different obligors. Owing to the complexity of realistic models,

quantitative risk analysis typically requires Monte-Carlo (MC) simulations (Glasserman, 2004).

These numerical experiments may become computationally expensive, if one is wishes to study

rare events like credit defaults. Hence, aiming at reducing the simulation time, variance reduction

techniques such as importance sampling play an increasingly important role when applying risk

analysis to realistic credit portfolio models.

During the past decade an intense effort has been made to develop efficient MC techniques

for the industry standard of risk measurement, Value-at-Risk (VaR), see Glasserman et al.

(2000a,b, 2001); Glasserman and Li (2003, 2005). Although very popular and widely used in
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practice (Jorion, 2000), VaR suffers from two severe deficiencies if considered as a measure of

downside risk:

(i) VaR penalizes diversification in many situations;

(ii) VaR is insensitive to the size of losses beyond the prespecified threshold level.

These serious shortcomings stimulated an intense search for alternative risk measures in recent

years (Artzner et al., 1999; Acerbi and Tasche, 2001; Tasche, 2002). In this context, it is our

main objective to discuss how the importance sampling methods recently developed for VaR

can be generalized to an alternative class of risk measures that avoids the drawbacks of VaR.

More precisely, we shall focus on Utility-based Shortfall Risk (SR), which belongs to the class

of convex risk measures and is defined with help of a convex loss functions `. Even though SR

does not share the deficiencies of VaR, its construction parallels to some extent the definition of

VaR. This formal analogy is the main reason why numerical methods for the estimation of VaR

may be carried over to the case of SR.

The paper is organized as follows. In Section 2 the definitions and properties of VaR and

SR are briefly summarized and compared. Section 3 is dedicated to the Normal Copula Model

(NCM), representing the foundation of CreditMetrics (Gupton et al., 1997). Generalizing the

approach of Glasserman and Li (2003, 2005) we will construct efficient MC estimators (which are

based on importance sampling method exponential twisting) for measuring SR within the NCM

of CreditMetrics. The good performance of the proposed estimators is illustrated by means of

numerical simulations. In Section 4 a similar analysis will be carried out for the Mixed Poisson

Model (MPM) which forms the basis of the portfolio model CreditRisk+ (Cre, 1997). The paper

concludes with a brief summary in Section 5.

2 Value-at-Risk vs. Utility-based Shortfall Risk

In spite of some well-known deficiencies (Embrechts et al., 2002; Giesecke et al., 2005), VaR

is among the most commonly used risk measures in the financial industry. In Section 2.1 we

shall recall the definition and basic properties of VaR. Subsequently, the convex risk measure

Utility-based SR, a useful alternative to VaR, will be defined and discussed in Section 2.2.

2.1 Value-at-Risk

We denote by L the overall loss of a credit portfolio over a fixed time horizon T . Assuming

that L is a random variable on some probability space (Ω,F,P), the risk measure VaR at level

λ ∈ (0, 1) can be defined as

VaRλ(L) := inf{c ∈ R | P[L− c > 0] ≤ λ}

= inf{c ∈ R | P[L > c] ≤ λ}

= inf{c ∈ R | E[1{L>c}] ≤ λ}. (1)

2



Here, E denotes the expected value with respect to the probability measure P, and 1{L>c} is the

indicator function of the event {L > c}. Thus, VaR corresponds to the quantile of the losses

at level λ. Equivalently, for any given level λ ∈ (0, 1), the VaR of a position is the smallest

monetary amount that needs to be added to the position such that the probability of a loss does

not exceed λ. Typical values for λ which are used in practice are λ = 0.05 or λ = 0.01.

Due its interpretation in terms of a loss probability threshold, VaR has become very popular

and is widely used in practice nowadays, cf. Jorion (2000). In particular, considerable effort has

been devoted towards developing efficient MC methods for estimating VaR in realistic credit

risk and market models, see e.g. Glasserman et al. (2000a,b, 2001); Glasserman and Li (2003,

2005). Unfortunately, VaR suffers from two drawbacks. Firstly, it does not assess portfolio

diversification as being beneficial. Mathematically, this is due to the fact that VaR is a non-

convex risk measure, cf. discussion in Acerbi and Tasche (2001, 2002); Tasche (2002); Dunkel

and Weber (2007). Secondly, VaR does not take into account the size of very large losses that

might occur in the case of a severe default event. The latter aspect can be illustrated by the

following simple example. Consider two portfolios with loss profiles L1 and L2, respectively,

where

L1 =











−1 $, with probability 99 %,

+1 $, with probability 1 %,

and

L2 =











−1 $, with probability 99 %,

+1010 $, with probability 1 %.

A negative loss value L1,2 ≤ 0 corresponds to the event ‘no loss’, whereas L1,2 > 0 means ‘loss’.

Setting λ = 0.01, one finds

VaRλ(L1) = VaRλ(L2) = −1 ≤ 0.

Hence, according to this VaR, both portfolios would be equally acceptable.1 In this example,

however, the first portfolio is clearly preferable. For more complicated models, the amplitude

of losses is usually much less obvious. Therefore, risk allocation based on VaR criteria may

result in a concentration on the portfolio position with the smallest default probability, even

if the potential loss associated with this position is extremely large. This severe drawback has

stimulated an intense research in recent years, leading among others to the definition of convex

SR measures as a useful alternative to VaR, see e.g. Föllmer and Schied (2002a,b, 2004); Fritelli

and Gianin (2002); Heath and Ku (2004).

1Generally, a position is considered acceptable if its risk measure is negative.
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2.2 Utility-based Shortfall Risk

A useful alternative to VaR is provided by the convex risk measure Utility-based Shortfall Risk

(SR), which is defined as follows: Let ` : R → R be a convex loss function, i.e. a function that

is increasing and not constant, and let λ be a point in the interior of the range of `. Assuming

that the expectation E[`(L)] is well-defined and finite, SR of L with loss function ` at level λ is

defined by

SR`,λ(L) := inf{c ∈ R | E[`(L− c)] ≤ λ}. (2)

Typical examples of convex loss functions are piecewise polynomial and exponential functions,

i.e.

`poly
γ (x) = γ−1xγ1{x>0}, γ > 1; (3a)

`exp
β (x) = exp(βx), β > 0, (3b)

with levels λ > 0 in both cases. In the remainder, we primarily focus on these two examples.

It is worthwhile to stress the close resemblance between the definitions of SR and VaR.

Formally, the SR definition (2) is obtained by replacing the indicator function in Eq. (1) with

the convex loss function `. This has the effect that SR is sensitive to the amplitude of losses,

whereas VaR is merely indicating, whether or not the loss L exceeds a certain threshold c with

a probability of at least λ. Hence, risk evaluation based on SR may significantly reduce the risk

of unexpected large losses, which might be overlooked by VaR (Giesecke et al., 2005).

We briefly summarize several properties of SR. In contrast to VaR, SR belongs to the class

of convex risk measures and, therefore, always encourages diversification; however, even though

SR measures are always convex, they are in general not coherent (for an axiomatic introduction

to risk measures see Föllmer and Schied 2004). It can also be shown that SR measures are the

only distribution-invariant, convex risk measures that are invariant under randomization (Weber,

2006).

SR is closely related to the von Neumann-Morgenstern theory of expected utility. Setting

u(x) := −`(−x), one obtains a concave Bernoulli utility function u, representing the central

object in the von Neumann-Morgenstern theory, see e.g. Föllmer and Schied (2004). Defining

the utility functional U(X) := E[u(X)], where X := −L is the gain of a financial position with

loss L, Eq. (2) can be rewritten as

SR`,λ(L) := inf{c ∈ R | U(−L+ c) ≥ −λ}. (4)

Thus, SR`,λ(L) is the smallest monetary amount that has to be added to the portfolio such that

its utility is at least −λ.

It remains to discuss how SR can be calculated in practice. The definition (2) is unwieldy

for direct numerical simulations, but there exists a comfortable way of determining SRλ(L) =
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SR`,λ(L) for a given portfolio model. As shown in Prop. 4.104 of Föllmer and Schied (2004),

the value SRλ(L) is given by the unique root s∗ of the function

fλ(s) := E[`(L− s)] − λ. (5)

Thus, determining s∗ = SRλ(L) can be subdivided into two partial tasks:

(i) Employ a recursive procedure in order to obtain a sequence s0, s1, . . ., such that sk → s∗

as k → ∞. Here, the choice of sk will be based on the knowledge of the value of the function fλ

at some of the points s1, s2, . . . , sk−1.

(ii) Given a model or a certain statistics of L, calculate fλ(sk) at a given point sk. For this

purpose, use MC methods to estimate the expected value E[`(L− sk)].

The root-finding problem (i) can be treated by means of standard techniques as e.g. the bisection

method or the secant method Press et al. (2002). In the case of the secant method, for example,

one has to choose two initial values s0 and s1, such that fλ(s0) 6= fλ(s1) holds, and the iterative

sequence {sk} is obtained via the recursion rule

sk+1 =
1

2

[

sk + sk−1 − (sk − sk−1)
fλ(sk) + fλ(sk−1)

fλ(sk) − fλ(sk−1)

]

, (6)

where k ≥ 1. Applying other iterative procedures, based on derivatives of fλ(s) with respect to

s, as e.g. Newton’s method, is less recommendable. The reason is that such derivatives usually

involve additional expected values, and thus would require additional MC sampling.

In the remainder, we shall focus on the task (ii), i.e., on the numerically efficient estimation

of the expectation value E[`(L− sk)] for a given portfolio model.

3 Normal Copula Model

Risk measures like VaR or SR can be used to quantify the downside risk of profit and loss

distributions of portfolios over a fixed time horizon. Realistic credit portfolio models capture

the dependence among obligors. A standard example is the Normal Copula Model (NCM), which

was introduced in Gupton et al. (1997) and provides the foundation of CreditMetrics. The basic

equations and properties of the NCM are briefly reviewed in Section 3.1. Subsequently, we discuss

importance sampling methods for the efficient estimation of SR in the NCM (Sections 3.2 and

3.3). Numerical simulations for simple benchmark portfolios will be presented in Section 3.4.

3.1 Basic equations

We consider a portfolio with m positions (or obligors) over a fixed time horizon T . Each position

is subject to default risk. For each obligor i = 1, 2, . . . ,m, a random variable Di with values in

{0, 1} indicates whether or not i has defaulted at horizon T . Di = 1 corresponds to a default of

position i. The partial net loss associated with a default of the obligor i is given by a positive
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constant vi > 0. Assuming no recovery, the overall loss L ≥ 0 of the portfolio over the horizon

T can be written in the standard form

L =
m

∑

i=1

viDi. (7)

The NCM is a threshold model describing a credit portfolio with m obligors, i.e. there exists

an m-dimensional random vector X = (X1, X2, . . . , Xm) and threshold levels x1, x2, . . . , xm ∈ R

such that

Di = 1{Xi>xi}.

In the NCM it is specifically assumed that X is an m-dimensional normal random vector with

standardized one-dimensional marginals. Denoting by pi = P{Di = 1} the marginal default

probability of the obligor i, we obtain that

xi = Φ−1(1 − pi), (8)

where Φ is the cumulative distribution function of the standard normal distribution N(0, 1).

Thus, instead of directly choosing xi, one could also specify the marginal default probabilities

p1, . . . , pm and determine the threshold values x1, . . . , xm from Eq. (8). In industry applications

of the NCM the covariance matrix of the Gaussian vector X is often specified through a factor

model of the form

Xi = Ai0εi +
d

∑

j=1

AijZj , i = 1, . . . ,m, , d < m; (9a)

1 = A2
i0 +A2

i1 + . . .+A2
id , Ai0 > 0, Aij ≥ 0. (9b)

The systematic risk variables Z1, . . . , Zd and the idiosyncratic risks variables ε1, . . . , εm are

chosen as independent standard normal random variables. The parameters (Aij) determine the

cross-coupling as well as the relative size (influence) of the different risk factors on the latent

variables X1, . . . , Xm. The additional constraint (9b) ensures that Xi ∼ N(0, 1) holds.

If X1, . . . , Xm are specified through the factor model above, the NCM obeys the following

conditional independence structure. Conditionally on the common factors Z = (Z1, . . . , Zd), the

default indicators Di are independently distributed. Conditional on the vector of systematic

factors Z, the default events {Di = 1} occur with probability

pi(Z) := P [Di = 1|Z] = Φ

(

∑d
j=1AijZj − xi

Ai0

)

. (10)

In principle, it is straightforward to perform numerical MC studies on the basis of Eqs. (7)–(10).

The NCM model is uniquely determined by the parameter vector

(m, d, p1, . . . , pm, v1, . . . , vm, A10, . . . , Amd).

In a naive MC simulation one first draws the d + m independent random numbers (εi)i=1,...,m

and (Zj)j=1,...,d from a standard normal distribution and then calculates L according to (7).
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Repeating this procedure several times, one can obtain estimators for functionals of L, e.g., the

moments E[Ln] of the loss distribution or the loss probabilities

λ(c) := P[L > c] = E[1{L>c}] ∈ [0, 1]. (11)

In the NCM the total portfolio loss is bounded from above, that is 0 ≤ L ≤ L+, L+ :=
∑m

i=1 vi

and it suffices therefore to consider c ∈ [0, L+]. Estimating the loss probabilities λ(c) is closely

related to determining the VaR. When measuring downside risk, one is typically interested in

estimating λ(c) for large values of c→ L+. In this case, the MC method outlined above becomes

computationally expensive, since the default events become very rare. Thus, naive MC estima-

tors do not provide good estimates, unless very large sample sizes are considered. Accordingly,

variance reduction techniques become very important in practical applications. Glasserman and

Li (2003, 2005) constructed efficient estimators for λ(c) by applying the importance sampling

method exponential twisting. As we will show next, an analogous approach can be used to obtain

numerically efficient MC estimators for SR.

3.2 Piecewise polynomial loss function

The SR of a loss variable L is given by the unique root of the function fλ defined in Eq. (5).

As described in Section 2.2, one can apply a recursive algorithm in order to obtain a sequence

s0, s1, . . ., such that sk → s∗ as k → ∞. The choice of sk is based on the knowledge of the value

of the function fλ at some of the points s1, s2, . . . , sk−1. Assuming that the sequence sk → s∗ is

determined by the secant iteration rule (6), it remains to discuss how to estimate E[`(L − sk)]

for fixed values sk ∈ (0, L+). Similar to the VaR case, naive MC estimators do not yield reliable

results for E[`(L − s)], unless very large sample sizes are considered (to simplify the notation,

we write s instead sk from now on); thus, variance reduction techniques become important.

Following Glasserman and Li (2003, 2005), who considered the estimation of VaR, we construct

MC estimators for E[`(L − s)] in the NCM by employing the importance sampling method

(conditional) exponential twisting. For practical applications this analogy is highly significant:

Standard variance reduction techniques for VaR can be extended to SR measures that do not

share the deficiencies of VaR.

In this section we shall consider the piecewise polynomial loss (3a) function

`poly
γ (x) = γ−1xγ1[0,∞)(x), γ > 1.

In this case, suitable initial values for the secant method are, e.g., given by s0 = 0 and s1 = L+.

The exponential loss function (3b) will be studied in Section 3.3.

3.2.1 Independent default events: exponential twisting

A particularly simple situation arises in the case of independent default events. In the NCM

model, this corresponds to parameters Ai0 = 1, Aij = 0, i = 1, . . . ,m, j = 1, . . . , d. The

7



total portfolio loss is L =
∑m

i=1 viDi with m independent Bernoulli-variables Di ∈ {0, 1} with

marginal probabilities pi = P[Di = 1]. This case is useful for illustrating the basic idea of

exponential twisting (Glasserman, 2004).

We aim at estimating EP[`(L− s)] = EP[h(L)] with h(L) = `(L− s). Here the subscript P

was introduced to indicate that expectations are calculated with respect to the measure P. If Q is

another probability measure which is equivalent to P with dQ
dP

= g(L), then EP[h(L)] = EQ

[

h(L)
g(L)

]

.

It follows that Jgn = n−1
∑n

k=1
h(Lk)
g(Lk) is an unbiased, consistent estimator of EP[h(L)], if the

random variables Lk are sampled independently from the distribution of L under Q. Since the

estimator is unbiased, its mean square error can be expressed as the square root of its variance.

Thus, the mean square error becomes small, if and only if the variance varQ

[

h(L)
g(L)

]

is small. In

the present case, we are primarily interested in events which correspond to large L. To reduce

the variance of the estimator, we need to transfer mass to these events. An exponential twist

refers to a density g which is exponential in L; i.e. we consider a class of measures Qθ, θ ≥ 0,

with
dQθ

dP
=

exp(θL)

exp[ψ(θ)]
,

where

ψ(θ) := log E[exp(θL)] =

m
∑

i=1

log
[

1 + pi
(

eθvi − 1
)]

(12)

is the cumulant generating function of the loss variable L, and exp[ψ(θ)] is a normalizing con-

stant. The twist parameter θ has to be determined such that a good variance reduction is

achieved (see discussion below).

For the NCM with independent default events the discussed measure change is equivalent

to a change of the individual default probabilities. The defaults are still independent under Qθ.

For the individual default probabilities under Qθ we obtain that

qi(θ) := Qθ[Di = 1] :=
pie

θvi

1 + pi(eθvi − 1)
. (13)

As evident from Eq. (13), the new default probabilities qi do not only depend on the original

default probabilities pi, but also on the partial losses vi. In general, for θ > 0 the default

probability of the ith portfolio position is increased (in particular, we have qi(0) = pi). Hence,

under the new measure Qθ default events are more likely to occur. The inverse likelihood ratio

for the change from P to Qθ can be written as

dP

dQθ
=

m
∏

i=1

(

pi
qi(θ)

)Di
(

1 − pi
1 − qi(θ)

)1−Di

= exp[−θL+ ψ(θ)]. (14)

Denoting by E and Eθ the expectations under P and Qθ, respectively, we can write

E[`(L− s)] = Eθ
[

`(L− s) exp[−θL+ ψ(θ)]
]

. (15)

Hence, in the case of the piecewise polynomial loss function, importance sampling for E[`(L −

s)] = E[γ−1(L− s)γ1{L≥s}] corresponds to generating samples of the quantity

γ−1(L− s)γ1{L≥s} exp[−θL+ ψ(θ)] (16)
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under the measure Qθ. The implementation of the sampling procedure is straightforward because

of Eq. (13). The probability distributions of the default indicators under Qθ are known, which

implies that L can easily be sampled.

It thus remains to discuss how the parameter θ can be determined such that the variance of

the estimator based on Eq. (16) is significantly smaller than the variance of the corresponding

naive estimator for the lhs. of (15). Since the estimator is unbiased, it is equivalent to consider

the second moment,

M2(s, θ) :=
1

γ2
Eθ

[

(L− s)2γ 12
{L≥s} exp[−2θL+ 2ψ(θ)]

]

=
1

γ2
E

[

(L− s)2γ 1{L≥s} exp[−θL+ ψ(θ)]
]

≤ M2(s, 0) exp[−θs+ ψ(θ)]. (17)

Here M2(s, 0) = E[(L − s)2γ 1{L≥s}] is the second moment ‘without’ exponential twisting.

Consequently, instead of directly minimizing M2(s, θ), which is very difficult or even impossible

in general, one can at least minimize the upper bound on the rhs. of inequality (17). A promising

choice for the twisting parameter is thus given by

θs =











u. s. of ψ′(θ) = s, s > ψ′(0);

0, s ≤ ψ′(0),
(18)

where the abbreviation ‘u. s.’ stands for ‘unique solution’. As discussed in the next section, this

approach is directly transferable to the case of non-independent defaults.

3.2.2 Dependent default events: conditional exponential twisting

Let us now return to the general case, where the default events of different portfolio positions

may be coupled. In this case, on the one hand, exponential twisting can be applied to the

conditional distribution P[ · |Z] of the indicator variables Di. Conditional on Z we are in the

situation of the last section, since defaults are conditionally independent given Z. On the other

hand, further variance reduction can be achieved by applying additional importance sampling

to the factor variables Z (two-step importance sampling).

One-step importance sampling The basic idea of conditional exponential twisting is thus

to replace in the formulae of Section 3.2.1 the default probabilities pi by the conditional default

probabilities

pi(Z) := P[Di = 1|Z] = Φ

(

∑d
j=1AijZj − xi

Ai0

)

. (19)

Analogous to Eq. (12), we define the conditional cumulant generating function by

ψ(θ, Z) := log E[exp(θL)|Z] =
m

∑

i=1

log
[

1 + pi(Z)
(

eθvi − 1
)]

. (20)
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As in Eq. (18), the parameter θ that governs the measure change can be determined. In the

current case, θ depends on the factor Z, i.e.

θs(Z) =











u.s. of ψ′(θ, Z) = s, s > ψ′(0, Z);

0, s ≤ ψ′(0, Z),
(21a)

where

ψ′(θ, z) :=
∂

∂θ
ψ(θ, z) , ψ′(0, Z) = E[L|Z] =

m
∑

i=1

vipi(Z). (21b)

With these definitions, the corresponding MC algorithm reads as follows:

1. Generate a d-dimensional Gaussian random vector of factor variables, Z ∼ N(0, 1d), where

1d denotes the d× d-unity matrix.

2. Calculate

qi(θs(Z), Z) :=
pi(Z) eviθs(Z)

1 + pi(Z)
(

eviθs(Z) − 1
) (22)

with θs(Z) given by Eq. (21) and pi(Z) given by Eq. (19).

3. Generate m Bernoulli-random numbers Di ∈ {0, 1}, such that Di = 1 with probability

qi(θs(Z), Z).

4. Calculate ψ(θs(Z), Z) from Eq. (20) and L =
∑m

i=1 viDi, and return the estimator

`(L− s) exp
[

−Lθs(Z) + ψ
(

θs(Z), Z
)]

. (23)

Here the exponential factor corresponds to the conditional likelihood ratio, compare Eq. (14).

As in the case of VaR (compare Glasserman and Li 2003, 2005), this algorithm yields a

significant variance reduction provided the default events are not too strongly correlated, i.e., if

Aij � 1 holds for i ≥ 1. Otherwise, additional importance sampling of the factor variables Z

may turn out to be helpful, cf. Glasserman et al. (1999); Glasserman and Li (2005); Glasserman

(2004); Dunkel (2005).

Two-step importance sampling In addition to the conditional exponential twisting de-

scribed above, one can shift the mean value of the distribution of the factor vector Z from

0 ∈ Rd to µ = (µ1, . . . , µd) ∈ Rd, in order to achieve further variance reduction (Glasserman and

Li, 2005). Compared to the one-step algorithm this causes two slight modifications only:

• Generate in the first step a factor vector Z ∼ N(µ, 1d) – instead of Z ∼ N(0, 1d).

• Return – instead of (23) – the estimator

`(L− s) exp
[

−Lθs(Z) + ψ
(

θs(Z), Z
)]

exp

(

−µ>Z +
µ>µ

2

)

, (24)

where z>z :=
∑d

j=1 z
2
j denotes the Euclidean scalar product in Rd.
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Here, the additional factor exp
(

−µ>Z + µ>µ/2
)

is the likelihood ratio for the change from the

d-dimensional standard normal distribution N(0, 1d) to the d-dimensional normal distribution

N(µ, 1d).

It remains to be discussed how to determine the shift vector µ. For this purpose we may

adapt the arguments of Glasserman et al. (1999) and Glasserman and Li (2005) to our setting.

The key idea is that the variance of an estimator Jn for E[`(L − s)] can be separated into two

summands,

var[Jn] = E
[

var[Jn|Z]
]

+ var
[

E[Jn|Z]
]

. (25)

Conditional exponential twisting reduces the first contribution on the rhs. of Eq. (25). Impor-

tance sampling with respect to Z should reduce the second contribution on the rhs. of Eq. (25).

For the latter purpose, we consider changes of measure that shift the mean of Z to some µ ∈ Rd.

By optimal choice of µ we wish to minimize the variance of the conditional mean of the corre-

sponding importance sampling estimators. Applying the arguments of Glasserman et al. (1999)

and Glasserman and Li (2005) to our case, we are led to the choice [compare Eq. (20) in

Glasserman and Li (2005)]

µ = argmax
z∈Rd

E[`(L− s)|Z = z] exp

(

−
z>z

2

)

. (26)

However, exact solution of the optimization problem (26) is usually difficult, and one has to

employ additional approximations. For our purpose the so-called tail bound approximation is

particularly useful (for other types of approximations, see Section 5.1 in Glasserman and Li

2005). Defining

Fs(z) := −θs(z) s+ ψ(θs(z), z) (27)

and making use of the general inequality

1{y>x} ≤ exp[θ(y − x)] , θ ≥ 0, (28)

we find for the piecewise polynomial loss function from Eq. (3a)

E[(L− s)γ1{L>s}|Z = z] ≤ E
[

|L− s|γ1{L>s}|Z = z
]

≤ E
[

|L− s|γeθs(Z)(L−s)|Z = z
]

≤ |L+|
γ eFs(z). (29)

Here we restricted ourselves to the relevant case 0 ≤ s ≤ L+. Inserting the upper boundary

from the last inequality into the optimization problem (26), one obtains

µ ≈ argmax
z∈Rd

(

Fs(z) −
z>z

2

)

. (30)

In practical applications, the simplified optimization problem (30) must be solved numerically

(which might still represent a formidable task for portfolios with m > 2).
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3.3 Exponential loss function

As another example of SR, we consider the exponential loss function `exp
β (x) = exp(βx) with

β > 0. In this particular case, the corresponding SR measure can explicitly be calculated, i.e.

SRλ(L) =
1

β
log

(

E[eβL]

λ

)

. (31)

It is therefore not necessary to apply the iterative root finding scheme when calculating this

particular risk measure.

Independent default events In the case of independent defaults we obtain the following

explicit representation

SRλ(L) =
1

β
[ψ(β) − log λ] (32)

with cumulant generating function

ψ(β) = log E[exp(βL)] =
m

∑

i=1

log
[

1 + pi
(

eβvi − 1
)]

. (33)

Since ψ(β) can be calculated explicitly in the NCM, numerical simulations are not necessary in

this case.

Dependent default events In the case of dependent defaults, Eq. (31) can be rewritten as

SRλ(L) =
1

β

[
∫

Rd

eψ(β,z)dF (z) − log λ

]

, (34a)

where

ψ(β, z) = log E[exp(βL)|Z = z] =
m

∑

i=1

log
[

1 + pi(z)
(

eβvi − 1
)]

(34b)

is the conditional cumulant generating function, and the distribution F of the factor variables

Z is given by the d-dimensional standard normal distribution

dF (z) =

(

1

2π

)d/2

exp

(

−
1

2

d
∑

j=1

z2
j

)

dz1 . . .dzd. (34c)

An estimator for the risk measure (34a) can be obtained by sampling from a Gaussian random

vector Z = (Z1, . . . , Zd) and returning the value

1

β

{

m
∏

i=1

[

1 + pi(Z)
(

eβvi − 1
)]

− log λ

}

. (35)

Accordingly, the estimator corresponding to n independent samples (Z(k))k=1,...,n is given by

Jn =
1

nβ

n
∑

k=1

{

m
∏

i=1

[

1 + pi(Z
(k))

(

eβvi − 1
)]

}

−
1

β
log λ , Z(k) ∼ N(0, 1d). (36)
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Variance reduction can be achieved by importance sampling with respect to the factor vector

Z. If we restrict attention to measure changes that shift only the mean of Z, a suitable choice

of µ can be obtained as a solution of the maximization problem

µ = argmax
z∈Rd

(

ψ(β, z) −
z>z

2

)

. (37)

The heuristics for this choice resembles the arguments described in Section 3.2.2. In practice, the

optimal shift-vector µ can be determined numerically from Eq. (37) for a given set of parameters

(m, d, pi, vi, Aij).

The likelihood ratio of the measure change from N(0, 1d) to N(µ, 1d) modifies the MC

estimator. The importance sampling estimator is thus given by

J̃n =
1

nβ

n
∑

k=1

{

exp

(

−µ>Z(k) +
µ>µ

2

) m
∏

i=1

[

1 + pi(Z
(k))

(

eβvi − 1
)]

}

−
1

β
log λ, (38)

where now the (Z(k)) are independently sampled from N(µ, 1d).

In principle, further improvements are possible. So far, we restricted the admissible measure

change to shifts in the mean. By a saddle-point approximation in the vicinity of the maximum µ

of (37), a measure change from Z ∼ N(0, 1d) to Z ∼ N(µ,B) with a modified covariance matrix

B could be constructed, see Jensen (1995). In this case, of course, the likelihood ratio and the

estimator had to be modified accordingly.

3.4 Numerical results

By considering numerical simulations of a simple benchmark portfolio, we shall now demon-

strate the efficiency of the proposed importance sampling methods for estimating convex SR

measures in the NCM. More precisely, we will focus on the estimation of the expected values

E[γ−1(L− c)γ 1{L≥c}] and E[eβL], being relevant for the cases of piecewise polynomial and ex-

ponential loss functions, respectively. In our simulations, we considered a portfolio described by

the following parameter set:

• Number of positions (obligors): m = 10.

• Size of partial net losses: vi = i, where i = 1, . . . ,m (i.e. financial losses are measured in

units of v1).

• Marginal default probabilities: pi = 0.05, where i = 1, . . . ,m. This choice corresponds to

threshold values xi = 1.645.

• Number of common risk factors: d = 3.

• Coupling coefficients: Aij = 0.1, i = 1, . . . ,m, j = 1, . . . , d. This choice yields Ai0 = 0.985

for the amplitude of the idiosyncratic risk factor.
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For these parameters the maximum possible net loss is given by L+ = 55. Although realistic

credit portfolios may contain a larger number of obligors and risk factors, this simple benchmark

portfolio suffices already in order to illustrate the efficiency of the importance sampling estima-

tors constructed in the preceding sections. In particular, for the above parameter values it is

still possible to compare with results obtained from naive MC simulations (realistic parameter

choices for the NCM are discussed by Haaf and Tasche 2002).

3.4.1 Polynomial loss function

Figure 1 shows estimates for the expected value E[γ−1(L− c)γ 1{L≥c}] for different sample sizes

n and different threshold values c. In our simulations we have chosen the value γ = 2, and used

the pseudo-random number generator of the computer algebra program Mathematica (Wol-

fram Research Inc., 1988-2000). The results in Figure 1 (a) were obtained via the naive MC

method, where L is directly sampled according to rules of the NCM. For comparison, Figure 1

(b) shows the corresponding results for the one-step importance sampling method discussed in

Section 3.2.2. The error bars are given by the sample standard deviation, which for an estimator

In =
1

n

n
∑

i=1

Yi

is defined by

ŝ(In) =

[

1

n− 1

n
∑

i=1

(Yi − In)
2

]1/2

.

By comparing the two diagrams, one readily observes the significantly improved convergence of

the importance sampling estimator. This trend is amplified when increasing the loss threshold c.

Additionally, we mention that, in the case of the naive MC method, for c & 0.7L+ and sample

sizes n ≤ 104.75, as considered in our simulations, the rare event {L ≥ c} could not be observed

anymore. In contrast to this, the one-step importance sampling estimators showed a good

convergence even in the range of large c.

In Table 1 we listed numerically obtained values of the sample variance ratio

Rn := ŝ(În)
2/ŝ(In)

2,

where În refers to the importance sampling estimator and In to the naive estimator. The

sample variance ratio Rn is a ‘good’ measure of the quality of different MC estimators, only if

the sample size n is sufficiently large; e.g. the values for c = 0.5L+ in Table 1 suggest that one

requires n ≥ 104 because of the slow convergence the naive estimator. Values Rn < 1 indicate

a variance reduction due to importance sampling. Hence, analogous to Figure 1, the values

in Table 1 illustrate the variance reduction gained by exponential twisting (note that values

Rn = ∞ signal that the sample size n was not large enough for observing the rare event {L ≥ c}

in the naive simulation).
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(b) one-step method: exponential twisting
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Figure 1: Numerical results for polynomial SR with γ = 2 in the NCM. The portfolio parameters

are given in Section 3.4. (a) Results based on direct (naive) sampling of E[γ−1(L− c)γ 1{L≥c}]

for different sample sizes n. We only included relevant data points corresponding to non-zero

estimates. The error bars are determined by the sample standard deviation. (b) Results obtained

via the one-step importance sampling method exponential twisting. One readily observes the

superior convergence of the importance sampling estimator, in particular, for large loss threshold

values c.

3.4.2 Exponential loss function

In the case of SR with an exponential loss function `β(x) = eβx we are interested in determining

the expected value E[eβL]. Figure 2 depicts numerical estimates for this quantity, obtained for

the same portfolio as before, using the parameter value β = 1 and different sample sizes n.

The solid line corresponds to the naive MC estimate, whereas the dashed curve is based on the

estimator (36). As before, error bars indicate the sample standard deviation.

 10000
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naive MC method
via cumulant generating function

Figure 2: SR with exponential loss function for the NCM test portfolio described in Section 3.4:

Numerical estimates for E[eβL] with β = 1. The solid line was obtained by direct sampling of

eβL, whereas the dashed curve is based on the estimator from Eq. (36).

In view of these results we may briefly summarize: The MC techniques developed by Glasser-

man and Li (2003, 2005) for estimating VaR in the NCM may be extended to estimate the convex
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risk measure SR in this model. As illustrated by our simulations, compared with naive MC meth-

ods, the proposed importance sampling algorithms exhibit a significantly improved convergence

behavior.

In the next section, we are going to demonstrate that a similar approach can be applied to

efficiently estimate SR in other credit risk models as well.

4 Mixed Poisson Model

The Mixed Poisson Model (MPM) forms the foundation of CreditRisk+ (Cre, 1997). The basic

equations of the MPM will be summarized in Section 4.1. Subsequently, we discuss important

sampling methods for estimating polynomial SR in this model (Section 4.2), and demonstrate

the efficiency of the proposed estimators by means of numerical simulations (Section 4.3). Last

but not least, it will be shown in Section 4.4 that exponential SR in the MPM can be calculated

analytically.

4.1 Basic equations

Similar to Eq. (7), the total portfolio loss L in the MPM is given by

L =
m

∑

i=1

viD̄i , vi > 0. (39)

However, in contrast to the NCM, the random variables D̄i are not interpreted as default indica-

tors, but play the role of default counters, taking values in N0 := {0, 1, 2, . . .}. This implies that

the loss L will in general not be bounded anymore. Here, each index i ∈ {1, . . . ,m} represents

a class of obligors, and all obligors from class i cause the same potential net losses vi. That

means, if an obligor of class i has defaulted at time horizon T , this leads to a partial loss vi; if

two obligors of the same class default, then their contribution to the total loss is 2vi, etc..

The distributions of the counting variables D̄i are specified as follows. Given some random

vector X = (X1, . . . , Xm), the variables (Di)i=1,...,m are independent and conditionally Poisson

distributed, i.e.

P[D̄i = k|X] =
Xk
i

k!
e−Xi , k ∈ N0, i = 1, . . . ,m. (40)

In industry applications, it is additionally assumed that the random vectorX is specified through

a factor model of the form

Xi = ai0 +
d

∑

j=1

AijZj , d < m. (41)

Here, (ai0) and (Aij) are parameters that satisfy the restrictions

• ai0 ≥ 0 for i = 1, . . . ,m,

• Aij ≥ 0,
∑d

j=1Aij > 0,
∑m

i=1Aij = 1 for i = 1, . . . ,m, j = 1, . . . , d.
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The common risk factors (Z1, . . . , Zd) = Z of the MPM are independent and obey Gamma-

distributions with parameters (αj , βj) ∈ (0,∞) × (0,∞); i.e., for each factor vector Z the

probability density function is given by:

f(z) =
d

∏

j=1

fj(zj), fj(zj) =
z
αj−1
j

βj
αjΓ(αj)

exp

(

−
zj
βj

)

, zj ≥ 0. (42)

We shall additionally impose the normalization

αj =
1

σ2
j

, βj = σ2
j , σj > 0 , j = 1, . . . , d. (43)

With this convention, we have

E[Zj ] = αjβj = 1 , var[Zj ] = αjβ
2
j = σ2

j , j = 1, . . . , d, (44)

and

pi := E(Xi) = ai0 +
d

∑

j=1

Aij , i = 1, . . . ,m. (45)

Thus, the MPM is characterized by the vector of parameters

(m, d, p1, . . . , pm, v1, . . . , vm, σ1, . . . , σd, A11, . . . , Amd).

4.2 Piecewise polynomial loss function

Glasserman and Li (2003) discuss how one can efficiently estimate VaR in the MPM. As in

the case of the NCM, their methods can be extended to the case convex SR measures that

avoid the deficiencies of VaR. In the present section we will outline the main aspects of the

corresponding MC algorithm. For this purpose, we will focus on the piecewise polynomial loss

function `γ(x) = γ−1xγ1{x≥0} from Eq. (3a). Conceptually, the approach is quite similar to the

two-step method discussed in Section 3.2.2.

The first step of the algorithm is given by the conditional exponential twisting of L, using

the likelihood ratio

h1(θ,X) = exp[−θL+ ψ(θ,X)], (46a)

where

ψ(θ,X) := log E[eθL|X] =
m

∑

i=1

Xi(e
θvi − 1) (46b)

is the conditional cumulant generating function of L with respect to X. Note that for calcu-

lating ψ(θ,X) one has to make use of the fact that the default counters D̄i are independent

conditional on X = (X1, . . . , Xm). Then under the changed measure the default counters are

again independent Poisson random variables with

Eθ[D̄i|X] = Xie
θvi . (47)
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Evidently, choosing θ > 0 increases the conditional mean of the default indicators D̄i. Thus,

as desired, under the new measure the default events are more likely to occur. In order to

achieve further variance reduction one can now additionally consider exponential twisting of the

independent factor variables Zj , by means of the likelihood ratio

h2(τ, Z) = exp

{

−
d

∑

j=1

[τjZj + αj log(1 − βjτj)]

}

. (48)

Here τ = (τ1, . . . , τd) denotes the parameters of the second measure change, while

ψj(τj) := log E[eθjZj ] = −αj log(1 − βjτj) (49)

is the cumulant generating function of originally Gamma(αj , βj)-distributed variables Zj . In

order to guarantee that Eq. (48) defines a change of measure, it is additionally required that

τj < 1/βj , j = 1, . . . , d. (50)

Under this condition the following statement holds: With respect to the new measure, parame-

terized by τ = (τ1, . . . , τd), each of the factor variables (Zj) are again independent and Zj obeys

a Gamma-distribution with modified parameters
(

αj ,
βj

1 − βjτj

)

;

i.e. exponential twisting maps a Gamma-distribution onto a Gamma-distribution with the same

shape parameter but a modified scale parameter.

Combining the two individual changes of measure from Eqs. (46) and (48), the likelihood

ratio of the resulting change of measure is given by the product

h12(θ, τ, Z) = h1(θ,X(Z)) h2(τ, Z)

= exp
[

−θL+ ψ(1)(θ) + ψ(2)(τ) + ψ(3)(θ, τ, Z)
]

, (51)

where

ψ(1)(θ) =

m
∑

i=1

ai0

(

eviθ − 1
)

,

ψ(2)(τ) = −
d

∑

j=1

αj log(1 − βjτj),

ψ(3)(θ, τ, Z) =
d

∑

j=1

Zj

[

−τj +
m

∑

i=1

Aij

(

eviθ − 1
)

]

.

For simplicity, one would like to choose the parameters θ and τ = (τ1, . . . , τd) such that the

likelihood ratio (51) depends on the factors (Zj) only through the loss variable L. This can be

achieved by setting

τj =
m

∑

i=1

Aij

(

eviθ − 1
)

. (52)
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Hence, inserting Eq. (52) into Eq. (51) yields the final form of the likelihood ratio for the

combined change of measure

dP

dQθ
= exp[−θL+ ψ(θ)], (53a)

where

ψ(θ) =
m

∑

i=1

ai0

(

eviθ − 1
)

−
d

∑

j=1

αj log

[

1 − βj

m
∑

i=1

Aij

(

eviθ − 1
)

]

(53b)

is the cumulant generating function of L under the original measure P. In contrast to the MPM,

in the NCM such a closed representation for the two-step method does not exist (or, at least,

has not yet been found).

In the case of the piecewise polynomial loss function `γ(x) = γ−1xγ1{x≥0} from Eq. (3a)

we are interested in estimating expected values of the form E[γ−1 (L− s)γ 1{L−s}]. By applying

the same arguments as in Section 3.2, one finds that for a given value of s a sensible twisting

parameter θ should be chosen according to [compare Eq. (18) above]

θs =











u. s. of ψ′(θ) = s, s > ψ′(0);

0, s ≤ ψ′(0).
(54)

Based on these considerations we are now in the position to summarize the main steps of the

MC algorithm:

1. Determine θs from Eq. (54).

2. Calculate τj for j = 1, . . . , d from Eq. (52), using θs.

3. Generate Zj ∼ Gamma
(

αj ,
βj

1−βjτj

)

for j = 1, . . . , d.

4. Calculate for i = 1, . . . ,m the conditional mean values Xi from Eq. (41).

5. Generate D̄i ∼ Poisson
(

Xie
viθs

)

for i = 1, . . . ,m.

6. Calculate L = v1D̄i + . . . vmD̄m and return the estimator

1

γ
(L− s)γ1{L≥s} exp[−θsL+ ψ(θs)]. (55)

Reiterating the procedure several times and subsequently calculating the sample average gives

the MC estimate for E[γ−1 (L − s)γ 1{L−s}]. These MC calculations must, of course, again be

combined with an iterative algorithm that solves for the root of the function fλ defined in Eq. (5),

cf. discussion at the end of Section 2.2.
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4.3 Numerical results

To illustrate variance reduction by exponential twisting in the MPM we performed numeri-

cal simulations of a simple benchmark portfolio. The parameters of this portfolio, chosen in

accordance with the rules of the MPM, read:

• Number of positions (obligors): m = 10.

• Size of partial net losses: vi = i, where i = 1, . . . ,m (i.e., financial losses are measured in

units of v1).

• Expected value of the latent variables: pi = E[Xi] = 0.1 for i = 1, . . . ,m.

• Number of (common) systematic risk factors: d = 3.

• Coupling coefficients: Aij = 0.01, where i = 1, . . . ,m and j = 1, . . . , d. This yields

ai0 = 0.07.

• Variance parameter for the distribution of the factor variables: σj = 1, where j = 1, . . . , d.

As in the case of the NCM, we used the pseudo-random number generator of Mathematica

(Wolfram Research Inc., 1988-2000) in these simulations.

Figure 3 shows numerical results for the expected value E[γ−1(L − c)γ 1{L≥c}] for varying

sample size n ∈ [102; 104.75] and four different threshold values c. The length of the error bars

corresponds to the sample standard deviation ŝ. As evident from the diagrams, compared to

the naive estimator, the importance sampling algorithm based on exponential twisting is again

characterized by significantly better convergence properties, in particular, when increasing the

threshold value c. Thus, the algorithm proposed in Section 4.2 does indeed provide a suitable

basis for the numerically efficient estimation of polynomial SR in the MPM.

4.4 Exponential loss function

As anticipated above, in the case of the MPM one can calculate analytically the SR associated

with the exponential loss function `β(x) = exp(βx) from Eq. (3b). Combining the explicit

representation from Eq. (31) with the definition of the cumulant generating function we have

SRλ(L) =
1

β

(

log E
[

eβL
]

− log λ
)

=
1

β
[ψ(β) − log λ] , (56a)

where, according to (53b), for the MPM

ψ(β) =
m

∑

i=1

ai0

(

eviβ − 1
)

−
d

∑

j=1

αj log

[

1 − βj

m
∑

i=1

Aij

(

eviβ − 1
)

]

. (56b)

Hence, numerical simulation are not necessary for determining exponential SR in the MPM.
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Figure 3: SR with piecewise polynomial loss function in the MPM. The simulation param-

eters are given in Section 4.3. (a) Numerical results based on the naive MC estimator for

E[γ−1(L− c)γ 1{L≥c}] with γ = 2. (b) Corresponding results obtained by using the exponential

twisting algorithm from Section 4.2. Evidently, over a wide range of threshold values c the

importance sampling estimator works much more efficiently than the naive estimator.

5 Concluding remarks

Evaluating the downside risk of financial positions represents a major task for financial insti-

tutions and regulating authorities. The frequently used risk measure Value-at-Risk (VaR) is

insensitive to the amplitude of losses beyond the threshold level and it often penalizes diversifi-

cation. Convex risk measures like Utility-based Shortfall Risk (SR) do not share these drawbacks

and thus present a useful alternative to VaR. SR provides a sensitive and flexible tool for the

measurement of severe loss events, and it allows for consistent dynamic risk evaluation if new

information becomes available (Weber, 2006).

In this paper, we have discussed important sampling techniques for determining polynomial

and exponential SR in the standard credit portfolio models CreditMetrics (Gupton et al., 1997)

and CreditRisk+ (Cre, 1997). It was demonstrated that the variance reduction method exponen-

tial twisting, employed by Glasserman and Li (2003, 2005) for measuring VaR, can be extended

to efficiently estimate SR in these models. Compared with naive Monte Carlo estimators, our

importance sampling estimators exhibit a significantly improved convergence behavior. This

was illustrated by means of numerical simulations.

To conclude with, standard techniques for VaR may be extended to convex SR measures

that do not share the deficiencies of VaR.
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log10(n) Rn for c = 0.3L+ Rn for c = 0.5L+

2.0 ∞ ∞

2.5 0.14 ∞

3.0 0.06 ∞

3.5 0.02 7.76

4.0 0.02 0.01

4.5 0.03 0.01

Table 1: Variance reduction for polynomial SR with γ = 2 in the NCM. The portfolio parameters

were the same as in Figure 1. The variance ratio Rn = ŝ(În)
2/ŝ(In)

2 is given for different values

of the sample size n and two different threshold values c, with In denoting the naive estimator

and În the one-step importance sampling estimator from Section 3.2.2. Values Rn = ∞ indicate

that the rare event {L ≥ c} could not be observed in the naive simulation up to sample size n;

values Rn < 1 indicate variance reduction due to importance sampling.
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