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ABSTRACT

We discuss efficient Monte Carlo (MC) methods for the es-
timation of convex risk measures within the portfolio credit
risk model CreditMetrics. Our focus lies on the Utility-
based Shortfall Risk (SR) measures, as these avoid several
deficiencies of the current industry standard Value-at-Risk
(VaR). It is demonstrated that the importance sampling
method exponential twisting provides computationally effi-
cient SR estimators. Numerical simulations of test portfolios
illustrate the good performance of the proposed algorithms.

1 INTRODUCTION

The quantification of credit risks is a key issue for both
financial institutions and regulating authorities. Modern
risk analysis builds on portfolio models that capture the
dependence among different obligors. Standard examples
include CreditMetrics (Gupton, Finger, and Bhatia 1997)
and CreditRisk+ (Credit Suisse Financial Products 1997).
Due to the complexity of realistic models, risk estimation
typically requires numerical simulations. These may become
computationally expensive if events with low probability,
like credit defaults, are investigated. In recent years consid-
erable effort has been put into the development of efficient
MC techniques for the popular risk measure VaR (Glasser-
man, Heidelberger, and Shahabuddin 2000a; Glasserman,
Heidelberger, and Shahabuddin 2000b; Glasserman, Hei-
delberger, and Shahabuddin 2001). Although widely used
in practice (Jorion 2000), VaR exhibits serious deficiencies:
it penalizes diversification in many situations and is insen-
sitive to the size of losses beyond a certain threshold level.
These drawbacks stimulated intense research on alternative
risk measures (Artzner et al. 1999; Acerbi and Tasche 2001;
Tasche 2002). Accordingly, it is our main objective here
to discuss efficient MC algorithms for risk measures that
do not share the drawbacks of VaR. More precisely, we
shall focus on the Utility-based SR which belongs to the
class of convex risk measures. Even though SR does not
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share the deficiencies of VaR, its construction parallels the
definition of VaR. This similarity allows us to extend the
numerical methods for VaR to the case of SR in a rather
straightforward manner.

The paper is organized as follows. Section 2 summarizes
the definitions and properties of VaR and Utility-Based
SR. Section 3 is dedicated to the Normal Copula Model
(NCM) underlying CreditMetrics. We will propose and
test MC algorithms for estimating SR in this model, based
on the importance sampling method exponential twisting
(Glasserman and Li 2003; Glasserman and Li 2005). The
paper concludes with a brief summary in Section 4.

2 RISK MEASURES

Section 2.1 recalls the basic properties of VaR. A general
classification scheme of risk measures will be discussed in
the Section 2.2. Utility-Based SR is defined in Section 2.3.

2.1 Value at Risk

By L we will always denote the overall loss of a credit
portfolio over a fixed time horizon, say T . L is a random
variable on some probability space (Ω,F ,P). Given a
random loss variable L, the risk measure VaR at level
λ ∈ (0,1) can be defined as

VaRλ (L) := inf{c ∈ R | P[L− c > 0]≤ λ}
= inf{c ∈ R | P[L > c]≤ λ}
= inf{c ∈ R | E[1{L>c}]≤ λ}. (1)

Here, E denotes the expected value with respect to the
probability measure P, and 1{L>c} is the indicator function
of the event {L > c}. Thus, VaR corresponds to the quantile
of the losses at level λ . Equivalently, for any given level
λ ∈ (0,1), the VaR of a position is the smallest monetary
amount that needs to be added to the position such that the
8
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probability of a loss does not exceed λ (typical choices are
λ = 0.05 or λ = 0.01).

Due to its simple interpretation, VaR is very popular
and widely used in practice nowadays. Nonetheless, VaR
is suffering from two severe drawbacks: (i) VaR does not
always assess portfolio diversification as beneficial (from the
mathematical point of view, this is due to the fact that VaR
is a non-convex risk measure, cf. Acerbi and Tasche 2001;
Acerbi and Tasche 2002; Tasche 2002; Embrechts, McNeil,
and Strautman 2002; Giesecke, Schmidt, and Weber 2005;
and also the remarks below); (ii) VaR does not take into
account the size of very large losses that might occur in the
case of a default event. The latter fact is readily illustrated
by the following simple example. Consider two portfolios
with loss profiles L1 and L2, respectively, where

L1 =

{
−1 $, with probability 99%,

+1 $, with probability 1 %,

and

L2 =

{
−1 $, with probability 99%,

+1010 $, with probability 1 %

(L1,2 < 0 corresponds to the event ‘no loss’, whereas L1,2 > 0
means ‘loss’). Then, for λ = 0.01 one finds

VaRλ (L1) = VaRλ (L2) =−1≤ 0.

Hence, according to this VaR, both portfolios would be
equally acceptable. For this example, of course, it is easily
seen that the first portfolio is preferable. For more real-
istic models, however, the amplitude of losses is usually
much less obvious. Therefore, risk minimization based on
VaR criteria may cause an investment concentration on the
portfolio position with the smallest default probability, even
if the potential absolute loss associated with this position
is ruinously large. This severe shortcoming of VaR has
stimulated an intense search for alternatives, leading to the
introduction of convex risk measures (Föllmer and Schied
2002a; Föllmer and Schied 2002b; Fritelli and Gianin 2002;
Heath and Ku 2004; Föllmer and Schied 2004).

2.2 General Classification of Risk Measures

Artzner et al. (1999) proposed an axiomatic approach, which
allows a systematic classification of different risk measures
according to rather general properties, as e.g. convexity,
homogeneity, and coherence.

Let D denote the space of financial positions. A risk
measure assigns to each financial position a number that
quantifies its risk. We assume that D is some vector
space of integrable random variables. For example, we
9

could choose D as the space of bounded financial posi-
tions L∞ or as the space of financial positions with finite
variance L2. A mapping ρ : D →R is called a distribution-
invariant risk measure if it satisfies the following conditions
for all X1,X2 ∈D : (i) Inverse Monotonicity: If X1 ≤ X2,
then ρ(X1)≥ ρ(X2). (ii) Cash Invariance: If m ∈ R, then
ρ(X1 +m) = ρ(X1)−m. (iii) Distribution-invariance: If the
distributions of X1 and X2 agree, then ρ(X1) = ρ(X2).

Monotonicity refers to the property that risk decreases
if the payoff profile is increased. Cash invariance formalizes
that risk is measured on a monetary scale: if a monetary
amount m ∈ R is added to a position X , then the risk of
X is reduced by m. Distribution-invariance requires that
two positions whose distributions agree have the same risk.
VaR is a distribution-invariant risk measure, but it neither
encourages diversification nor does it properly account for
extreme loss events. Before considering alternative risk
measures, we discuss some additional properties:

(a) Convexity formalizes the idea that diversification
reduces risk. Let X1,X2 ∈ D and α ∈ [0,1]. The position
αX1 + (1−α)X2 is called diversified. The risk measure
ρ is convex, if the risk of any diversified position does
not exceed the weighted sum of the risk of the individual
positions, i.e. for any X1,X2 ∈D and any α ∈ [0,1],

ρ(αX1 +(1−α)X2)≤ αρ(X1)+(1−α)ρ(X2).

(b) Positive homogeneity is a property which is often
required, but which is economically less meaningful. It
states that if the size of a position is multiplied by a positive
factor, then the associated risk is multiplied by the same
factor, i.e. ρ is positively homogeneous if ρ(λX) = λρ(X)
for any X ∈D and any λ ≥ 0. This property neglects the
asymmetry between gains and losses. Increasing the size
of a position by a factor λ may increase the associated risk
by a factor larger than λ if the costs of bearing losses grow
faster than their size. For example, the larger a position,
the more costly it typically becomes to liquidate it.

(c) Coherence states that a risk measure is both convex
and positively homogeneous.

(d) Invariance under randomization formalizes an idea
also known as invariance under compound lotteries and
invariance under mixing. Suppose X1,X2 ∈D are acceptable
with respect to a given risk measure ρ , i.e. ρ(X1)≤ 0 and
ρ(X2)≤ 0. Consider the randomized position X given by

X =
{

X1 with probability α

X2 with probability 1−α
α ∈ (0,1)

where α is drawn independently of X1 and X2. Should this
position be acceptable? After tossing a coin, a bank gets
either the acceptable X1 or the acceptable X2. From the point
of view of a financial institution, it seems reasonable that X
should also be accepted. From a descriptive point of view,
59
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for uncertainty averse individuals the answer might be no.
From a normative perspective, the uncertainty associated
with randomization should not matter. Similarly, if the
individual positions are not acceptable with respect to risk
measure ρ , i.e. ρ(X1) > 0 and ρ(X2) > 0, then X should
also not be acceptable. A risk measure ρ is called invariant
under randomization, if randomized positions of acceptable
positions are again acceptable and if randomized positions
of unacceptable positions are again unacceptable. This
property is also closely related to the consistent dynamic
measurement of risk (Weber 2006).

VaR is invariant under randomization and positively
homogeneous. However, it is never convex, if D contains L∞.

2.3 Utility-based Shortfall Risk

VaR does not appropriately measure the risk of the rarely
occurring large losses. A useful alternative is provided by
the Utility-based SR, defined as follows.

Let ` : R → R be a convex loss function (i.e. ` is
increasing and not constant). Let λ be a point in the interior
of the range of `. To each financial position (payoff profile)
X we assign an associated loss variable L by L :=−X . The
space of financial positions D is chosen such that for X ∈D
the expectation E[`(−X)] is well-defined and finite. Then
SR with loss function ` at level λ is defined by

SR`,λ (L) := inf{c ∈ R | E[`(L− c)]≤ λ}. (2)

Typical examples of convex loss functions are exponential
and piecewise polynomial functions, reading

`
exp
β

(x) = exp(βx), β > 0; (3a)

`
poly
γ (x) = γ

−1xγ 1{x>0}, γ > 1, (3b)

with levels λ > 0 in both cases. In the remainder, we
primarily focus on these two examples.

We summarize the properties of SR. SR is convex and
therefore encourages diversification. It is invariant under
randomization. More generally, it can be shown that SR mea-
sures are essentially the only distribution-invariant convex
risk measures that are invariant under randomization (Weber
2006). Thus, SR measures are the only distribution-invariant
convex risk measures that should be used for the dynamic
measurement of risk over time. This important advantage
of SR over other risk measures provides a major moti-
vation for developing MC methods for SR measures. At
the same time, SR is well suited for measuring extreme
events (Giesecke, Schmidt, and Weber 2005). SR measures
are always convex, but in general not coherent. They are
coherent, if and only if their loss functions are of the form
`(x) = λ −ax−+bx+, b≥ a≥ 0 with x− and x+ denoting
the negative and positive parts of x, respectively.
9

It is worthwhile to stress the close resemblance between
the definitions of SR and VaR. Formally, the SR definition (2)
is obtained by replacing the indicator function in Eq. (1)
with the convex loss function `. This has the effect that
SR is sensitive to the amplitude of losses, whereas VaR
is merely indicating, whether or not the loss L exceeds a
certain threshold c with a probability of at least λ . Hence,
risk evaluation based on SR may significantly reduce the
risk of unexpected large losses, which might be overlooked
by VaR (Giesecke, Schmidt, and Weber 2005).

It remains to discuss how SR can be calculated in prac-
tice. The definition (2) is unwieldy for direct numerical
simulations, but there exists a comfortable way of deter-
mining SRλ (L) = SR`,λ (L) for a given portfolio model. As
shown in Prop. 4.104 of Föllmer and Schied (2004), the
value SRλ (L) is given by the unique root s∗ of the function

fλ (s) := E[`(L− s)]−λ . (4)

Thus, determining s∗ = SRλ (L) can be subdivided into two
partial tasks: (i) Employ a recursive procedure in order to
obtain a sequence s0,s1, . . ., such that sk → s∗ as k → ∞.
Here, the choice of sk will be based on the knowledge of the
value of the function fλ at some of the points s1,s2, . . . ,sk−1.
(ii) Given a model for L or for a certain statistics of L,
calculate fλ (sk) at a given point sk. For this purpose, use
MC methods to estimate the expected value E[`(L− sk)].

The root-finding problem (i) can be treated by means
of standard techniques as e.g. the bisection method or the
secant method (Press, Vetterling, and Flannery 2002). In the
case of the secant method, for example, one has to choose
two initial values s0 and s1, such that fλ (s0) 6= fλ (s1) holds,
and the iterative sequence {sk} is obtained via the recursion
rule

sk+1 =
1
2

[
sk + sk−1− (sk− sk−1)

fλ (sk)+ fλ (sk−1)
fλ (sk)− fλ (sk−1)

]
, (5)

where k ≥ 1. Applying other iterative procedures, based
on derivatives of fλ (s) with respect to s, as e.g. Newton’s
method, is less recommendable. The reason is that such
derivatives usually involve additional expected values, and
thus would require additional MC sampling.

In the remainder, we shall focus on the task (ii), i.e.,
on the numerically efficient estimation of the expectation
value E[`(L− sk)] for a given portfolio model.

3 NORMAL COPULA MODEL

The NCM (Gupton, Finger, and Bhatia 1997) provides the
foundation of the standard credit risk model CreditMet-
rics. The basic equations of the NCM are summarized in
Section 3.1. Importance sampling methods for SR will be
60
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discussed in Sections 3.2 and 3.3. Numerical results are
presented in Section 3.4.

3.1 Basic Equations

Consider a portfolio with m positions (obligors) over a fixed
time horizon, say T . Each position is subject to default risk.
For each obligor i = 1,2, . . . ,m, a random variable Di with
values in {0,1} indicates whether or not i has defaulted at
horizon T . Di = 1 corresponds to a default of position i.

The partial net loss associated with a default of the
obligor i is given by a positive constant vi > 0. Assuming
no recovery, the overall loss L≥ 0 of the portfolio over the
horizon T can be written in the standard form

L =
m

∑
i=1

viDi. (6)

The NCM is a particular threshold model, i.e. there exists
an m-dimensional random vector X = (X1,X2, . . . ,Xm) and
threshold levels x1,x2, . . . ,xm ∈ R such that

Di = 1{Xi>xi}.

In the NCM it is specifically assumed that X is an m-
dimensional normal random vector with standardized one-
dimensional marginals. Letting pi = P{Di = 1} be the
marginal default probability of obligor i, we obtain that

xi = Φ
−1(1− pi), (7)

where Φ denotes the cumulative distribution function of the
standard normal distribution. Therefore, instead of directly
choosing xi, one could also specify the marginal default
probabilities p1, . . . , pm and determine the threshold values
x1, . . . ,xm according to Eq. (7). In industry applications,
the covariance matrix of the Gaussian vector X is often
specified through a factor model of the form

Xi = Ai0εi +
d

∑
j=1

Ai jZ j, 1 = A2
i0 +A2

i1 + . . .+A2
id , (8)

where i = 1, . . . ,m, d < m and Ai0 > 0, Ai j ≥ 0 are para-
meters. The systematic risk variables Z1, . . . ,Zd and the
idiosyncratic risks variables ε1, . . . ,εm are chosen as inde-
pendent standard normal random variables. The parameters
(Ai j) determine the cross-coupling as well as the relative
size (influence) of the different risk factors on the latent
variables X1, . . . ,Xm in the NCM. The second constraint in
Eq. (8) ensures that Xi ∼N (0,1) holds.

If X1, . . . ,Xm are specified through the above factor
model, the NCM obeys the following conditional indepen-
dence structure (Glasserman and Li 2005). Conditionally on
the common factors Z = (Z1, . . . ,Zd), the default indicators
96
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Di are independently distributed. Conditional on the vector
of systematic factors Z, the default events {Di = 1} occur
with probability

pi(Z) := P[Di = 1|Z] = Φ

(
∑

d
j=1 Ai jZ j − xi

Ai0

)
. (9)

In principle, it is straightforward to perform numerical
MC studies of the NCM on the basis of Eqs. (6)–(9).
The NCM model is uniquely determined by the para-
meter vector (m,d, p1, . . . , pm,v1, . . . ,vm,A10, . . . ,Amd). In
a naive MC simulation one first draws the d + m inde-
pendent random numbers (εi)i=1,...,m and (Z j) j=1,...,d from
a standard normal distribution and then calculates L ac-
cording to (6). Repeating this procedure several times,
one can obtain estimators for functionals of L, e.g., the
moments E[Ln] of the loss distribution, or the loss probabil-
ities λ (c) := P[L > c] = E[1{L>c}] ∈ [0,1]. Estimating the
loss probabilities λ (c) is closely related to determining the
VaR. In the NCM the total portfolio loss is bounded from
above, 0≤ L≤ L+, L+ := ∑

m
i=1 vi and it suffices to consider

c∈ [0,L+]. When measuring downside risk, one is typically
interested in estimating λ (c) for large values of c. In this
case, the straightforward MC method outlined above be-
comes computationally demanding, since the default events
become rare for c → L+. Glasserman and Li (2003) con-
structed more efficient estimators of λ (c) by applying the
importance sampling method exponential twisting. As we
will show next, an analogous approach can be used to obtain
numerically efficient MC estimators for SR.

3.2 Piecewise Polynomial Loss Function

According to Section 2.3, cf. Eq. (4), we have to construct
an MC estimator for the expectation values E[`(L− s)],
where s∈ (0,L+) is a fixed loss value, ` a given convex loss
function, and the distribution of L is determined by the rules
of the NCM. Our variance reduction technique parallels the
construction of Glasserman and Li (2003) and Glasserman
and Li (2005) who considered the estimation of VaR. For
practical applications this observation is highly significant:
standard techniques for VaR can easily be extended to risk
measures that do not share the deficiencies of VaR.

In this section we consider the piecewise polynomial loss
function from Eq. (3b), `

poly
γ (x) = γ−1xγ 1{x≥0} with γ > 1.

In this case, suitable initial values for the secant method
are, e.g., given by s0 = 0 and s1 = L+. An exponential loss
function (3a) will be studied in Section 3.3.

3.2.1 Independent Defaults: Exponential Twisting

A particularly simple situation arises in the case of indepen-
dent default events. In the NCM model, this corresponds
to parameters Ai0 = 1, Ai j = 0, i = 1, . . . ,m, j = 1, . . . ,d.
1
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The total portfolio loss is L = ∑
m
i=1 viDi with m independent

Bernoulli-variables Di ∈ {0,1} with marginal probabilities
pi = P[Di = 1]. This case is useful for illustrating the basic
idea of exponential twisting.

We aim at estimating EP[`(L− s)] = EP[h(L)] with
h(L) = `(L− s). Here the subscript P was introduced to
indicate that expectations are calculated with respect to the
measure P. If Q is another probability measure which is
equivalent to P with dQ

dP = g(L), then EP[h(L)] = EQ

[
h(L)
g(L)

]
.

It follows that Jg
n = n−1

∑
n
k=1

h(Lk)
g(Lk)

is an unbiased, consistent
estimator of EP[h(L)], if the random variables Lk are sampled
independently from the distribution of L under Q. Since the
estimator is unbiased, its mean square error can be expressed
as the square root of its variance. Thus, the mean square
error becomes small, if and only if the variance varQ

[
h(L)
g(L)

]
is small. In the present case, we are primarily interested in
events which correspond to large L. To reduce the variance
of the estimator, we need to transfer mass to these events. An
exponential twist refers to a density g which is exponential
in L; i.e. we consider a class of measures Qθ , θ ≥ 0, with

dQθ

dP
=

exp(θL)
exp[ψ(θ)]

,

where

ψ(θ) := logE[exp(θL)] =
m

∑
i=1

log
[
1+ pi

(
eθvi −1

)]
(10)

is the cumulant generating function of the loss variable L, and
exp[ψ(θ)] is a normalizing constant. The twist parameter
θ has to be determined such that a good variance reduction
is achieved (see discussion below).

For the NCM with independent default events the dis-
cussed measure change is equivalent to a change of the
individual default probabilities. The defaults are still inde-
pendent under Qθ . For the individual default probabilities
under Qθ we obtain that

qi(θ) := Qθ [Di = 1] :=
pieθvi

1+ pi(eθvi −1)
. (11)

As evident from Eq. (11), the new default probabilities qi
do not only depend on the original default probabilities pi,
but also on the partial losses vi. In general, for θ > 0 the
default probability of the ith portfolio position is increased
(in particular, we have qi(0) = pi). Hence, under the new
measure Qθ default events are more likely to occur. The
inverse likelihood ratio for the change from P to Qθ can
96
be written as

dP
dQθ

=
m

∏
i=1

(
pi

qi(θ)

)Di
(

1− pi

1−qi(θ)

)1−Di

= exp[−θL+ψ(θ)].

(12)

Denoting by E and Eθ the expectations under P and Qθ ,
respectively, we can write

E[`(L− s)] = Eθ

[
`(L− s)exp[−θL+ψ(θ)]

]
. (13)

Hence, in the case of the piecewise polynomial loss function,
importance sampling for E[`(L−s)] = E[γ−1(L−s)γ 1{L≥s}]
corresponds to generating samples of the quantity

γ
−1(L− s)γ 1{L≥s} exp[−θL+ψ(θ)] (14)

under the measure Qθ . The implementation of the sampling
procedure is straightforward because of Eq. (11). The
probability distributions of the default indicators under Qθ

are known, which implies that L can easily be sampled.
It thus remains to discuss how the parameter θ can be

determined such that the variance of the estimator based
on Eq. (14) is significantly smaller than the variance of the
corresponding naive estimator for the lhs. of (13). Since
the estimator is unbiased, it is equivalent to consider the
second moment,

M2(s,θ) :=
1
γ2 Eθ

[
(L− s)2γ 12

{L≥s} exp[−2θL+2ψ(θ)]
]

=
1
γ2 E

[
(L− s)2γ 1{L≥s} exp[−θL+ψ(θ)]

]
≤ M2(s,0) exp[−θs+ψ(θ)]. (15)

Here M2(s,0) = E[(L− s)2γ 1{L≥s}] is the second moment
‘without’ exponential twisting. Consequently, instead of
directly minimizing M2(s,θ), which is very difficult or
even impossible in general, one can at least minimize the
upper bound on the rhs. of inequality (15). A promising
choice for the twisting parameter is thus given by

θs =

{
u. s. of ψ ′(θ) = s, s > ψ ′(0);
0, s≤ ψ ′(0),

(16)

where the abbreviation ‘u. s.’ stands for ‘unique solution’.
As discussed in the next section, this approach is directly
transferable to the case of non-independent defaults.

3.2.2 Dependent Defaults: Conditional Twisting

We return to the general case, where the default events
of different portfolio positions are coupled. On the one
hand, in this case exponential twisting can be applied to
2
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the conditional distribution P[ · |Z] of indicator variables
Di. Conditional on Z we are in the situation of the last
section, since defaults are conditionally independent for a
given Z. On the other hand, further variance reduction can
be achieved by applying an additional importance sampling
to the factor variables Z (two-step importance sampling).

One-step importance sampling. The basic idea of
conditional exponential twisting is to replace in the formulae
of Sec. 3.2.1 the default probabilities pi by the conditional
default probabilities

pi(Z) := P[Di = 1|Z] = Φ

(
∑

d
j=1 Ai jZ j − xi

Ai0

)
. (17)

Analogous to Eq. (10), we define the conditional cumulant
generating function by

ψ(θ ,Z) := logE[exp(θL)|Z]

=
m

∑
i=1

log
[
1+ pi(Z)

(
eθvi −1

)]
.

(18)

Analogous to Eq. (16), a variance reducing parameter θs(Z)
can be determined, yielding

θs(Z) =

{
u. s. of ψ ′(θ ,Z) = s, s > ψ ′(0,Z);
0, s≤ ψ ′(0,Z),

(19)

where ψ ′(θ ,z) := ∂

∂θ
ψ(θ ,z) and ψ ′(0,Z) = E[L|Z] =

∑
m
i=1 vi pi(Z). With these definitions, the one-step MC al-

gorithm reads as follows: (i) Generate a d-dimensional
Gaussian random vector of factor variables, Z ∼N (0,1d),
where 1d denotes the d×d-unity matrix. (ii) Calculate

qi(θs(Z),Z) :=
pi(Z)eviθs(Z)

1+ pi(Z)
(
eviθs(Z)−1

) (20)

with θs(Z) given by Eq. (19) and pi(Z) given by Eq. (17).
(iii) Generate m Bernoulli-random numbers Di ∈ {0,1},
such that Di = 1 with probability qi(θs(Z),Z). (iv) Calculate
ψ(θs(Z),Z) from Eq. (18) and L = ∑

m
i=1 viDi, and return

the estimate

`(L− s)exp
[
−Lθs(Z)+ψ

(
θs(Z),Z

)]
. (21)

Here the exponential factor corresponds to the conditional
likelihood ratio, cf. Eq. (12). Steps (i)–(iv) are repeated
until the standard deviation of the sampling values (21) has
become sufficiently small.

As in the VaR case (Glasserman and Li 2003; Glasser-
man and Li 2005), this algorithm yields a significant variance
reduction provided the default events are not too strongly
correlated (i.e., if Ai j � 1 holds for i ≥ 1). Otherwise,
963
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additional importance sampling of the factor variables Z
may turn out to be helpful (Glasserman, Heidelberger, and
Shahabuddin 1999; Glasserman and Li 2005; Dunkel 2005;
Glasserman 2004).

Two-step importance sampling. In addition to the
above conditional exponential twisting, one can shift the
mean value of the distribution of the factor vector Z from
0∈Rd to µ = (µ1, . . . ,µd)∈Rd , in order to achieve further
variance reduction (Glasserman and Li 2005). Compared to
the one-step algorithm this causes two slight modifications
only: Generate in the first step a factor vector Z ∼N (µ,1d)
– instead of Z ∼N (0,1d); return – instead of (21) – the
estimate

`(L− s) exp
[
−Lθs(Z)+ψ

(
θs(Z),Z

)
−µ

>Z +
µ>µ

2
]
,

where z>z := ∑
d
j=1 z2

j . The additional factor exp
(
−µ>Z +

µ>µ/2
)

is the likelihood ratio for the change from the
d-dimensional standard normal distribution N (0,1d) to
the d-dimensional normal distribution N (µ,1d). A useful
choice for the shift vector µ may be found by generalizing the
arguments of Glasserman, Heidelberger, and Shahabuddin
(1999) and Glasserman and Li (2005) to the case of convex
loss functions, yielding (Dunkel 2005)

µ ≈ argmax
z∈Rd

(
Fs(z)−

z>z
2

)
, (22)

where Fs(z) :=−θs(z) s+ψ(θs(z),z). In practical applica-
tions, the optimization problem (22) may be solved numer-
ically.

3.3 Exponential Loss Function

As the second example, consider the exponential loss func-
tion `

exp
β

(x) = exp(βx) with β > 0. In this particular case,
the corresponding SR can explicitly be calculated, and one
finds

SRλ (L) = β
−1

{
logE[eβL]− logλ

}
. (23)

It is thus not necessary to apply the iterative root-finding
scheme when calculating this risk measure for the NCM.

In the case of independent defaults, Eq. (10) yields the
following explicit representation

SRλ (L) = β
−1

{
m

∑
i=1

log
[
1+ pi

(
eβvi −1

)]
− logλ

}
. (24)
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In the case of dependent defaults, Eq. (23) can be rewritten
as

SRλ (L) =
1
β

[∫
Rd

eψ(β ,z)dF(z)− logλ

]
, (25)

where ψ(β ,z) = ∑
m
i=1 log

[
1 + pi(z)

(
eβvi − 1

)]
is the con-

ditional cumulant generating function (18), and dF(z) =
(2π)−d/2 exp

(
− 1

2 ∑
d
j=1 z2

j
)
dz1 . . .dzd . Accordingly, the esti-

mator for the risk measure (25) reads

Jn =
1

nβ

n

∑
k=1

{
m

∏
i=1

[
1+ pi(Z(k))

(
eβvi −1

)]}
− logλ

β
, (26)

where the random vectors Z(k) are sampled from
a d-dimensional standard normal distribution, i.e.
Z(k) ∼N (0,1d), and n is the sample size.

Further variance reduction can be achieved by impor-
tance sampling with respect to the factor vector Z. If we
restrict attention to measure changes that shift only the mean
of Z, a suitable choice of µ can be obtained as a solution
of the maximization problem (Dunkel 2005)

µ = argmax
z∈Rd

(
ψ(β ,z)− z>z

2

)
. (27)

The heuristics for this choice resembles the arguments lead-
ing to Eq. (22); cf. Glasserman, Heidelberger, and Shahabud-
din (1999) and Glasserman and Li (2005). In practice, the
shift-vector µ can be determined numerically from Eq. (27)
for a given set of parameters (m,d, pi,vi,Ai j). Including the
likelihood ratio of the measure change from N (0,1d) to
N (µ,1d), one finds the modified MC estimator

Ĵn =
1

nβ

n

∑
k=1

{
exp

(
−µ

>Z(k) +
µ>µ

2

)
×

m

∏
i=1

[
1+ pi(Z(k))

(
eβvi −1

)]}
− logλ

β
(28)

with Z(k) independently sampled from N (µ,1d).

3.4 Numerical Results

We shall now demonstrate the efficiency of the proposed
importance sampling methods by means of numerical sim-
ulations of the NCM. More precisely, we will focus on the
estimation of the expected values E[γ−1(L−c)γ 1{L≥c}] and
E[eβL], being relevant for the cases of SR with piecewise
polynomial and exponential loss functions, respectively. In
our simulations, we considered a simple test portfolio de-
scribed by the following parameter set:
96
• Number of positions (obligors): m = 10.
• Size of partial net losses: vi = i, where i = 1, . . . ,m

(i.e. financial losses are measured in units of v1).
• Marginal default probabilities: pi = 0.05, where

i = 1, . . . ,m. This choice corresponds to threshold
values xi = 1.645.

• Number of common risk factors: d = 3.
• Coupling coefficients: Ai j = 0.1, i = 1, . . . ,m, j =

1, . . . ,d. This choice yields Ai0 = 0.985 for the
amplitude of the idiosyncratic risk factor.

For these parameters the maximum possible net loss is given
by L+ = 55. Although realistic credit portfolios may contain
a larger number of obligors and risk factors, this simple
benchmark portfolio suffices already in order to illustrate the
efficiency of the importance sampling estimators constructed
in the preceding sections In particular, it allows us to compare
with results obtained by the naive MC approach (realistic
parameter choices for the NCM are discussed by Haaf and
Tasche 2002).

3.4.1 Polynomial Loss Function

Figure 1 shows estimates for the expected value
E[γ−1(L− c)γ 1{L≥c}] for different sample sizes n and dif-
ferent threshold values c. In these simulations we have
chosen the value γ = 2, and used the pseudo-random num-
ber generator of the computer algebra program Mathematica
(Wolfram Research Inc. 2000). The results in Fig. 1 (a)
were obtained via the naive MC method, where L is directly
sampled according to the rules of the NCM. Figure 1 (b)
shows the corresponding results for the one-step importance
sampling method discussed in Sec. 3.2.2. The error bars
give the sample standard deviation, which for an estimator
of the form In = n−1

∑
n
i=1 Yi is defined by

ŝ(In) =

[
1

n−1

n

∑
i=1

(Yi− In)2

]1/2

.

By comparing the two diagrams, one readily observes the
significantly improved convergence of the importance sam-
pling estimator. This trend is amplified when increasing the
loss threshold c. We mention that, in the case of the naive
MC method, for c & 0.7L+ and sample sizes n ≤ 104.75 ,
as considered in our simulations, the rare event {L ≥ c}
became practically unobservable. In contrast to this, the
one-step importance sampling estimators showed a good
convergence even in the range of large values c→ L+.

3.4.2 Exponential Loss Function

In the case of SR with exponential loss function `β (x) = eβx

we are interested in determining the expected value E[eβL],
4
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Figure 1: Numerical results for polynomial SR with γ = 2.
The NCM parameters are given in Sec. 3.4. (a) Results
based on direct sampling of E[γ−1(L− c)γ 1{L≥c}] for dif-
ferent sample sizes n. We only included relevant data
points corresponding to non-zero estimates. The error bars
are determined by the sample standard deviation. (b) Re-
sults obtained via the one-step importance sampling method
exponential twisting. One readily observes the superior con-
vergence of the importance sampling estimator, in particular,
for large loss threshold values c.

cf. Sec. 3.3. Figure 2 shows numerical estimates for this
quantity, obtained for the same portfolio as before, using
the parameter value β = 1 and different sample sizes n. The
solid line corresponds to the naive MC estimator, i.e. direct
sampling of exp(βL), while the dashed curve is based on the
importance sampling estimator Jn from Eq. (26). As before,
error bars indicate the sample standard deviation. This
diagram illustrates that Eq. (26) can be used to efficiently
estimate the exponential SR in the NCM.

4 CONCLUSION

Evaluating the downside risk of financial positions repre-
sents a major task for financial institutions and regulating
authorities. In this context, Utility-based Shortfall Risk (SR)
provides an excellent alternative to the industry standard
Value-at-Risk (VaR). VaR is insensitive to the amplitude of
losses beyond the threshold level and does not always value
965
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nn
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Figure 2: SR with exponential loss function for the NCM
test portfolio described in the text. Numerical estimates for
E[eβL] with β = 1 for different sample sizes n. The solid
line was obtained by direct sampling of eβL, whereas the
dashed curve is based on the estimator from Eq. (26).

the effect of diversification as beneficial. The convex risk
measure SR overcomes these deficiencies. SR provides a
sensitive and flexible tool for the measurement of extreme
loss events. Moreover, SR allows for consistent dynamic
risk evaluation if new information becomes available (Weber
2006).

In this paper, we have discussed how SR can be imple-
mented into the standard credit portfolio model CreditMet-
rics. It has been demonstrated that importance sampling
via exponential twisting, as proposed by Glasserman and Li
(2005) for estimating VaR, can also be used to efficiently es-
timate SR in this model. Compared with naive Monte Carlo
methods, the proposed importance sampling estimators ex-
hibit a significantly improved convergence behavior. We also
note that similar methods can be applied to efficiently esti-
mate SR in other factor models as e.g. CreditRisk+ (Credit
Suisse Financial Products 1997, Dunkel 2005).

To summarize, standard techniques for VaR may easily
be extended to convex SR measures that do not share the
deficiencies of VaR.
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JÖRN DUNKEL is a Doctoral Research Associate at
the Institute of Theoretical Physics at Universität Augs-
burg. He previously was a member of the Max-Planck-
Institute for Astrophyics. He has studied at Humboldt-
Universität zu Berlin and University of Oxford. He holds
diplomas in physics and mathematics from the Humboldt-
Universität zu Berlin. His present research interests include
Monte-Carlo methods in stochastic finance and relativis-
tic stochastic processes. His web page can be found via
<www.physik.uni-augsburg.de/∼dunkeljo/>.

STEFAN WEBER is an Assistant Professor at the School
of Operations Research and Industrial Engineering at Cor-
nell University, Ithaca, New York. He has studied at the
University of Hannover, Purdue University, New York Uni-
versity, the European University Institute, and Humboldt-
Universität zu Berlin. He holds an M.Sc. in mathemat-
ics from the University of Hannover, an M.A. in Eco-
nomics from the European University Institute in Florence,
and a Ph.D. in mathematics from Humboldt-Universität
zu Berlin. His research interests include Monte-Carlo
methods in risk management, credit valuation, and opti-
mal portfolio choice. His web page can be found via
<people.orie.cornell.edu/∼sweber/>.

http://www.physik.uni-augsburg.de/~dunkeljo/
http://people.orie.cornell.edu/~sweber/

	INTRODUCTION
	RISK MEASURES
	Value at Risk
	General Classification of Risk Measures
	Utility-based Shortfall Risk

	NORMAL COPULA MODEL
	Basic Equations
	Piecewise Polynomial Loss Function
	  Independent Defaults: Exponential Twisting
	  Dependent Defaults: Conditional Twisting

	Exponential Loss Function
	Numerical Results
	  Polynomial Loss Function
	  Exponential Loss Function


	CONCLUSION

