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1 Introduction

For financial institutions the measurement and management of downside risk is a key issue. Value

at Risk (VaR) has emerged as the industry standard for risk measurement but shows serious

deficiencies as a measure of downside risk. It penalizes diversification in many situations and

does not take into account the size of very large losses exceeding the value at risk. These problems

motivated intense research on alternative risk measures whose foundation was provided by Artzner,

Delbaen, Eber & Heath (1999).

A good risk measure needs to have several virtues. First, it should measure risk on a monetary

scale: the notion of risk entails the amount of capital we need to set aside in order to make a

position acceptable from a risk management perspective. Second, a risk measure should penalize

concentrations and encourage diversification. Third, a risk measure should be sensitive to the size

of losses. Taking a more practical perspective, a risk measure should also be easily estimated from

simulations of profit and loss distributions. Many characterization theorems for alternative families

of risk measures are now available. An excellent summary of recent results can be found in Föllmer

& Schied (2004).

While these results are an important first step towards better risk management, an analysis

of the economic implications of different approaches to risk measurement is indispensable. In

the current article we retain the standard financial economics paradigm of rational choice, and

investigate the agent’s optimal wealth under a joint budget and risk measure constraint for arbitrary

utility functions. Regulators, for example, might impose a risk constraint to certain companies, a

manager of a firm might require his traders to stay within some risk limit, or an investor might

wish to bound his own risk exposure. We provide a complete solution for the utility maximization

problem under these constraints in a general semimartingale framework. For the market we neither

have to assume absence of arbitrage nor completeness. Instead, for unbounded utility functions

the absence of arbitrage can be seen as a consequence of the existence of a solution to the utility

maximization problem. In order to analyze the impact of the downside risk constraint we discuss

two examples and compare the solutions to both utility maximization without risk constraint and

under a value at risk constraint. While the risk measure VaR limits the probability of a loss,

it actually leads to large losses in these events. This deficiency is not shared by the family of

utility-based shortfall risk measures (UBSR) on which we focus in the current article. In fact,
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UBSR measures possess all the virtues which we discussed above. For a detailed description of

their properties we refer to Föllmer & Schied (2004), Weber (2006), Dunkel & Weber (2005), and

Giesecke, Schmidt & Weber (2005).

Utility maximization under a budget constraint is a fundamental problem in Mathematical Fi-

nance and has been studied in many articles, see, e.g., Aumann & Perles (1965), Merton (1969),

Merton (1971), Pliska (1986), Cox & Huang (1989), Cox & Huang (1991), Karatzas, Lehoczky

& Shreve (1987), He & Pearson (1991), Karatzas, Lehoczky, Shreve & Xu (1991), Kramkov &

Schachermayer (1999), Goll & Rüschendorf (2001), and Bellini & Frittelli (2002). Optimal invest-

ment policies under joint budget and downside risk constraints in terms of value at risk and a

second risk functional1 have been studied in a Brownian setting by Basak & Shapiro (2001) and

Gabih et al. (2005). For these special cases, Basak & Shapiro (2001) and Gabih et al. (2005) analyze

the economic impact of the risk constraints. Solutions are suggested by duality methods, but both

articles do not verify that these actually satisfy the constraints and hence exist. In contrast to the

one-dimensional case of a budget constraint only, this verification together with precise conditions

for existence provides the most difficult part of the analysis. To the best of our knowledge, we are

the first who close this gap in the literature. In addition, we formulate the risk constraint in terms

of convex risk measures and do not stick to a Brownian world but provide a complete solution to

the problem in a general semimartingale setting.

In the case of a utility function which is not bounded from above existence of a solution to the

utility maximization problem has an interesting implication. If its utility is finite, the market has

the no free lunch with vanishing risk property (NFLVR) in the sense of Delbaen and Schachermayer,

see, e.g., Delbaen & Schachermeyer (1997) and the references therein. This parallels related results

of Ankircher & Imkeller (2005) who investigate utility maximization without risk constraint and

the role of asymmetric information.

Our article is also the basis for a solution of a robust utility maximization problem under a

joint robust budget and risk constraint in an incomplete market if an economic agent is faced with

1It should be pointed out that the alternative risk functional in Basak & Shapiro (2001) and Gabih, Grecksch &

Wunderlich (2005) is not a risk measure in the sense of Artzner et al. (1999) or Föllmer & Schied (2004), since it

is not translation-invariant. Nevertheless, it can be shown that their risk constraint can be reformulated in terms

of a risk measure. Conceptually, the ideas in Section 2.3 need to be applied to a particular loss function which is

piecewise linear.
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model uncertainty. This problem is solved in Gundel & Weber (2007). For an axiomatic theory

of robust utility we refer to Gilboa & Schmeidler (1989) and Föllmer & Schied (2004). Solutions

to robust utility maximization problems without a risk constraint can be found in Quenez (2004),

Gundel (2005), Föllmer & Gundel (2006), Schied (2005), and Schied & Wu (2005) .

The paper is organized as follows. In Section 2 we present the constrained maximization prob-

lem. Section 3 is devoted to the solution. The proofs are collected in Section 6. In Section 4 we

discuss specific examples of price processes, namely geometric Brownian motion and a geometric

Poisson process. Section 5 concludes the article. An appendix contains auxiliary results.

2 The Constrained Maximization Problem

We consider a market over a finite time horizon T which consists of d + 1 assets, one bond and d

stocks. We suppose that the bond price is constant. The price processes of the stocks are given by

an Rd-valued semimartingale S on a filtered probability space (Ω,F , (Ft)0≤t≤T , R) satisfying the

usual conditions, where F = FT ; see Protter (2004), page 3.

An F-measurable random variable will be interpreted as the value of a financial position at

maturity T or, equivalently, as the terminal wealth of an agent. Positions which are R-almost

surely equal can be identified. The set of all terminal financial positions is denoted by L0.

A self-financing portfolio with initial value x is a d-dimensional predictable, S-integrable process

(ξt)0≤t≤T which specifies the amount of each asset in the portfolio. The corresponding value process

of the portfolio is given by

Vt := x +
∫ t

0
ξsdSs (0 ≤ t ≤ T ). (1)

The family V(x) denotes all non-negative value processes of self-financing portfolios with initial

value equal to x.

Definition 2.1. A probability measure P which is absolutely continuous with respect to R is

called an absolutely continuous martingale measure if any V ∈ V(1) is a local martingale under P .

The family of these measures is denoted by P. Any P ∈ P which is equivalent to R is called an

equivalent local martingale measure. The family of these measures will be denoted by Pe.

We interpret measures in the set P as pricing measures and assume throughout that

P 6= ∅. (2)
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The stronger statement Pe 6= ∅ is related to the absence of arbitrage opportunities (namely no

free lunch with vanishing risk), and will actually follow from the existence of a solution of the

utility-maximization problem if the utility function is not bounded from above.

2.1 Utility Functionals

We are interested in maximizing the utility from terminal wealth given a joint budget and risk

measure constraint. The problem consists in finding a maximal element W ∈ F with respect to a

given preference order º on some set of admissible financial positions. Under mild conditions such

a preference order admits a numerical representation

W º W̃ ⇐⇒ U(W ) ≥ U(W̃ )

with some utility functional U . If the preference order satisfies the von-Neumann-Morgenstern or

Savage axioms, then U can be expressed in terms of a Bernoulli utility function u : R→ R∪{−∞}
and a probability measure Q0 which is equivalent to the reference measure R, i.e.,

U(W ) = EQ0 [u(W )]. (3)

In the current paper we consider the case of preference orders that admit a numerical represen-

tation (3). This analysis is also the basis for an extension to robust expected utility in the sense of

Gilboa & Schmeidler (1989) which is considered in Gundel & Weber (2007).

We always assume that the utility function u : R → R ∪ {−∞} is strictly increasing, strictly

concave, continuously differentiable in the interior of the domain dom u := {x ∈ R : u(x) > −∞},
and satisfies the Inada conditions

u′(∞) := lim
x→∞u′(x) = 0, (U1)

u′(x̄u) := lim
x↘x̄u

u′(x) = ∞ (U2)

for x̄u := inf{x ∈ R : u(x) > −∞}. It follows that the interior of the essential domain of u is given

by the open interval dom u = (x̄u,∞). Note that x̄u might actually take the value −∞.

The inverse of the derivative of u will play a crucial role in the analysis and is denoted by

I := (u′)−1.
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2.2 The Budget Constraint

Let us fix an initial wealth x2 ∈ R, and let P ∈ P be an absolutely continuous martingale measure.

We will consider financial positions W ∈ L1(P ) that satisfy the following budget constraint:

EP [W ] ≤ x2. (4)

Intuitively, (4) signifies that the P -price of W is bounded by x2. W.l.o.g. we may and will always

choose x2 > x̄u, since otherwise no terminal wealth with finite utility satisfies the budget constraint

(4).

Remark 2.2. If the set of equivalent martingale measures Pe contains only one element, the

market is complete. For any financial position W ∈ L1(P ) there exists a trading strategy in the

underlying assets, described by a d-dimensional predictable, S-integrable process (ξt)0≤t≤T , such

that P -almost surely

EP [W |Ft] = EP [W ] +
∫ t

0
ξsdSs (0 ≤ t ≤ T ),

i.e., any financial position is attainable by a self-financing strategy, see Jacod (1975), Theorem

5.4. The budget constraint (4) guarantees that the cost of replication is bounded by x2. Hence,

requiring the terminal wealth to satisfy the budget constraint (4) is exactly the same as considering

only those financial positions that can be obtained as the terminal wealth from a self-financing

trading strategy if the initial wealth is x2. The wealth maximization problem is thus equivalent to

the dynamic portfolio optimization problem of maximizing EQ0

[
u

(
x2 +

∫ T
0 ξsdSs

)]
over some set

of admissible strategies ξ.

Remark 2.3. If the set of equivalent martingale measures Pe contains more than one element, the

market is incomplete and the terminal wealth can in general not be replicated by a self-financing

strategy. In addition, the budget constraint (4) does not even guarantee that solutions to the

optimization problem which we are going to consider can be super-hedged by portfolios with an

initial value of x2. That is, if W ∈ L1(P ) is an optimal solution to the constrained optimization

problem (9) below, there might not exist a trading strategy (ξt)0≤t≤T in the underlying assets such

that P -almost surely

EP [W |Ft] ≤ x2 +
∫ t

0
ξsdSs (0 ≤ t ≤ T ).
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Thus, P is not directly linked to replication costs. Nevertheless, if Pe 6= ∅, thus the market being

free of arbitrage, then P ∈ P could be interpreted as both a pricing measure which is used by a

particular financial institution or the pricing measure in market equilibrium.

In addition, the solution of the utility maximization problem (9) below for an incomplete market

(i.e., |Pe| > 1) provides the basis for the analysis of the robust utility maximization problem in

Gundel & Weber (2007).

2.3 The Risk Constraint

We will investigate the problem of utility maximization in presence of both a budget and a risk

constraint. The risk of a financial position can be quantified by appropriate risk measures. We let

D be some vector space of random variables that contains the constants.

Definition 2.4. A mapping ρ : D → R is called a risk measure (on D) if it satisfies the following

conditions for all W1, W2 ∈ D:

• Inverse Monotonicity: If W1 ≤ W2, then ρ(W1) ≥ ρ(W2).

• Translation Invariance: If m ∈ R, then ρ(W + m) = ρ(W )−m.

VaR is a risk measure according to the above definition, but it does in general not encourage

diversification of positions, since it is not a convex risk measure if L∞ ⊆ D. In the current

article we focus on a particular example of a convex risk measure, namely utility-based shortfall

risk. Utility-based shortfall risk is most easily defined as a capital requirement, i.e., the smallest

monetary amount that has to be added to a position to make it acceptable.2 We will now give the

definition of utility-based shortfall risk.

Let ` : R → [0,∞] be a convex loss function, i.e., an increasing function that is not constant.

The level x1 shall be a point in the interior of the range of `. Let Q1 be a fixed subjective probability

measure equivalent to R, which we will use for the purpose of risk management.3 The space of

financial positions D is chosen in such a way that for W ∈ D the integral
∫

`(−W )dQ1 is well

defined.
2Note that every static risk measure can be defined as a capital requirement, see Föllmer & Schied (2004). To be

more precise, if ρ is a risk measure, then A = {W ∈ D : ρ(W ) ≤ 0} defines its acceptance set, i.e., the set of positions

with non-positive risk. ρ is then recovered as ρ(W ) = inf{m ∈ R : W + m ∈ A}.
3For example, in our model one could suppose that both Q1 and Q0 signify the empirical real world measure.
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Define an acceptance set

A = {W ∈ D : EQ1 [`(−W )] ≤ x1} . (5)

A financial position is thus acceptable if the expected value of `(−W ) under the subjective proba-

bility measure Q1, i.e., the expected loss EQ1 [`(−W )], is not more than x1.4

The acceptance set A induces the risk measure utility-based shortfall risk (UBSR in the follow-

ing) ρ as the associated capital requirement

ρ(W ) = inf{m ∈ R : W + m ∈ A}. (6)

Utility-based shortfall risk is convex and does therefore encourage diversification. Examples

of loss functions ` include exponentials exp(αx), α > 0, which leads to the so-called entropic risk

measure, for which a simple explicit formula is available; see Föllmer & Schied (2004), Example

4.105. Alternatively, one-sided loss functions can be used to measure downside risk only. These

risk measures look at losses only and do not consider tradeoffs between gains and losses. Examples

include xα · 1(0,∞)(x), α > 1, or exponentials exp(αx) · 1(0,∞)(x), α > 0, where 1(0,∞) denotes the

indicator function of (0,∞).

In the current article we investigate utility maximization under a risk measure constraint. The

shortfall risk constraint (UBSR constraint in the following) shall be given by

ρ(W ) ≤ 0. (7)

A financial position W which satisfies (7) is acceptable from the point of view of the risk measure

ρ. This is equivalent to

EQ1 [`(−W )] ≤ x1. (8)

We require the loss function ` to satisfy additional technical conditions. We assume that `

is strictly convex, strictly increasing, and continuously differentiable on the interval (−x̄`,∞) for

some x̄` ∈ R∪ {∞}, that `(x) = 0 for x ≤ −x̄`, and that ` is continuous on the whole real line and

limx→∞ `′(x) = ∞.

4We have defined acceptability in terms of a loss function `. Alternatively, we could define u`(x) = −`(−x) and

interpret u` as a Bernoulli utility function. U`(W ) = EQ1 [u`(W )] defines in this case a von Neumann Morgenstern

utility. W is thus acceptable if its utility is at least −x1. This explains why the risk measure is called utility-based.
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2.4 The Maximization Problem

Let us denote the set of terminal financial positions with well defined utility by

I =
{
W ∈ L1(Ω,F , P ) : W ≥ x̄u and u(W )− ∈ L1(Ω,F , Q0)

}
.

We are now able to formulate the optimization problem under a joint budget and UBSR constraint:

Maximize EQ0 [u(W )] over all W ∈ I that satisfy EQ1 [`(−W )] ≤ x1 and EP [W ] ≤ x2. (9)

The set of all financial positions in I that satisfy the constraints is denoted by W, i.e.,

W := {W ∈ L1(Ω,F , P ) : W ≥ x̄u, u(W )− ∈ L1(Ω,F , Q0), EQ1 [`(−W )] ≤ x1, and EP [W ] ≤ x2}.

If x̄u > −∞, then we may and will always assume w.l.o.g. that x̄` ∈ (x̄u,∞]. Since any terminal

wealth with utility larger than −∞ does not take any values below x̄u with positive probability,

any loss constraint with x̄` ≤ x̄u is trivially satisfied, and we are back in the classical case without

any risk constraint.

3 The Solution

We will show that under suitable integrability assumptions the unique solution to the constrained

maximization problem (9) can be written in the form

w∗
(

λ∗1
dQ1

dQ0
, λ∗2

dP

dQ0

)
,

where w∗ : [0,∞)× (0,∞) → (x̄u,∞) is a continuous deterministic function, and λ∗1, λ
∗
2 are suitable

real parameters. dQ1

dQ0
and dP

dQ0
signify the Radon-Nikodym densities of Q1 and P with respect to

Q0. w∗ is obtained as the solution of a family of deterministic maximization problems. We state

the solution first and postpone all proofs to later sections.

We define a family of functions gy1,y2 with y1, y2 ≥ 0 by

gy1,y2(x) := u(x)− y1`(−x)− y2x.

For each pair y1 ≥ 0, y2 > 0 the maximizer of gy1,y2 is unique and equals

w∗(y1, y2) :=





J(y1, y2) if y2 > u′(x̄`) + y1`
′(−x̄`+),

x̄` if u′(x̄`) ≤ y2 ≤ u′(x̄`) + y1`
′(−x̄`+),

I(y2) if y2 < u′(x̄`),

(10)
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see Appendix A. Here, J(y1, y2) denotes the unique solution to the equation u′(x) + y1`
′(−x) = y2

for the case that y2 > u′(x̄`) + y1`
′(−x̄`+), and I = (u′)−1. Note that w∗(0, y2) = I(y2) = J(0, y2).

The derivation of the solution of (9) requires as prerequisite the solution of a related problem.

We need to determine a financial position Y ∗ ≥ x̄u that minimizes the expected loss under the

budget constraint (4). That is, we have to solve the problem

Minimize EQ1 [`(−W )] over all financial positions W ≥ x̄u with EP [W ] ≤ x2. (11)

We will see that the solution to this problem is of the form

−L

(
c∗

dP

dQ1

)
.

Here L : R→ [−x̄`,−x̄u] is defined as the generalized inverse of the derivative of the loss function

`, i.e.,

L(y) :=





−x̄u if y ≥ `′(−x̄u),

(`′)−1(y) if `′(−x̄`+) < y < `′(−x̄u),

−x̄` if y ≤ `′(−x̄`+).

(12)

L is a continuous function which is strictly increasing on [`′(−x̄`+), `′(−x̄u)]. Properties of the

functions w∗ and L are collected in Appendix A.

In order to guarantee the existence of our solution to the optimization problem (9), we have to

make the following technical assumptions.

Assumption 3.1. Let the functions w∗ and L be defined as in (10) and (12). We impose the

following integrability assumptions for all λ1 ≥ 0, λ2 > 0, and c > 0:

(a) w∗
(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)
∈ L1(P ),

(b) `
(
−w∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

))
∈ L1(Q1),

(c) u
(
w∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

))−
∈ L1(Q0),

(d) L
(
c dP

dQ1

)
∈ L1(P ),

(e) `
(
L

(
c dP

dQ1

))
∈ L1(Q1).

Assumption 3.1 extends standard integrability conditions to the case of utility maximization

under a joint budget and UBSR constraint. Assumptions (a)-(c) guarantee that price, expected

loss and utility of the solution are well defined. Assumptions (d) and (e) impose integrability of
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the solution to the loss minimization problem (11), which is an intermediate step in the analysis of

problem (9). In contrast to the utility maximization problem without risk constraint, the existence

of a solution to (9) is not immediate from Assumption 3.1, but requires a sophisticated analysis of

the constraints, see Lemma 6.1 and Section 6.4 below.

Before we proceed with our main results, let us discuss sufficient conditions for Assumption 3.1.

If the essential domain of the utility function u is bounded from below, Assumption 3.1 follows

from a growth condition on u and a moment condition on dQ0

dP . This parallels the assumptions

made in Aumann & Perles (1965), Cox & Huang (1991), and Bank & Riedel (2001).

Proposition 3.2. Assume that x̄u = 0, W 6= ∅ and that u has regular asymptotic elasticity (RAE)

in the sense of Kramkov & Schachermayer (1999), i.e.,

lim sup
x→∞

xu′(x)
u(x)

< 1

Suppose moreover that there exist b ∈ (0, 1) and C > 0 such that

lim sup
x→∞

u(x)
xb

≤ C, (13)

dQ0

dP
∈ L

b
1−b (Q0). (14)

Then Assumption 3.1 holds, and condition Assumption 3.1(c) can be replaced by the stronger state-

ment that for all λ1 ≥ 0, λ2 > 0,

u

(
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))
∈ L1 (Q0) .

Proof. See Section 6.1.

Let us now state the solution to the loss minimization problem (11).

Lemma 3.3. Suppose that Assumptions 3.1(d)&(e) hold and let x2 < x̄`. Then the equation

x2 = −EP

[
L

(
c

dP

dQ1

)]
(15)

has a solution c∗ > 0. A solution to problem (11) is given by

Y ∗ := −L

(
c∗

dP

dQ1

)
,

and the budget constraint is binding. On the set
{

dP
dR > 0

}
, the loss minimizing terminal wealth is

R-almost surely unique, i.e., Y ∗1{dP/dR>0} = Ỹ ∗1{dP/dR>0} R-almost surely for any other solution

Ỹ to (11).
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Proof. See Section 6.2.

Suppose now that Assumption 3.1 holds. Before stating the main result of the article, we have

to introduce some notation. We assume that x2 > x̄u, since otherwise there is no solution to the

maximization problem. We let x1 > 0, according to the definition of UBSR. There exists a unique

solution λ̃2 > 0 of the equation5

x2 = EP

[
I

(
λ2

dP

dQ0

)]
. (16)

The terminal wealth I
(
λ̃2

dP
dQ0

)
is actually the unique optimal solution to the utility maximization

problem if we remove the risk constraint, see, e.g., Cox & Huang (1989) or Kramkov & Schacher-

mayer (1999).

We will now state the solution to the original problem (9) which we will prove in Section 6.

Theorem 3.4. Suppose that Assumption 3.1 holds. Let x1 > 0, x2 > x̄u, and let c∗ and λ̃2 be

defined as in (15) and (16). There are three cases:

(i) We have x2 < x̄` and x1 ≤ EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
. Then there exists either no or P -almost

surely just one financial position which satisfies both constraints.

(ii) We have EQ1

[
`
(
−I

(
λ̃2

dP
dQ0

))]
< x1. This implies that either x2 ≥ x̄` or, if x2 < x̄`,

x1 > EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
.

Then

W ∗ := I

(
λ̃2

dP

dQ0

)

is a solution to the maximization problem (9), and the UBSR constraint is not binding. If

u (W ∗) ∈ L1(Q0), then it is the unique solution.

(iii) We have either x2 ≥ x̄` or, if x2 < x̄`, x1 > EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
, and in both cases

EQ1

[
`
(
−I

(
λ̃2

dP
dQ0

))]
≥ x1.

Then a solution to the maximization problem (9) exists and both constraints are binding. A

5This follows from Assumption 3.1 (a) for λ1 = 0, the Inada conditions (U1) and (U2), and the monotone

convergence theorem.
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solution is given by

W ∗ := w∗
(

λ∗1
dQ1

dQ0
, λ∗2

dP

dQ0

)

=





J
(
λ∗1

dQ1

dQ0
, λ∗2

dP
dQ0

)
on

{
λ∗2

dP
dQ0

> u′(x̄`) + λ∗1
dQ1

dQ0
`′(−x̄`+)

}
,

x̄` on
{

u′(x̄`) ≤ λ∗2
dP
dQ0

≤ u′(x̄`) + λ∗1
dQ1

dQ0
`′(−x̄`+)

}
,

I
(
λ∗2

dP
dQ0

)
on

{
λ∗2

dP
dQ0

< u′(x̄`)
}

,

where w∗ and J are defined as in (10), and λ∗1 ≥ 0, λ∗2 > 0 satisfy

x1 = EQ1 [` (−W ∗)] (17)

and

x2 = EP [W ∗] . (18)

If u(W ∗) ∈ L1(Q0), then W ∗ is the unique solution.

Proof. See Section 6.3.

This theorem provides a complete solution to the utility maximization problem (9) in all possible

cases. Case (i) includes two subcases. The first is the irrelevant situation in which the constraints

are too strict and there exists no terminal wealth that satisfies both constraints. The second subcase

is highly nongeneric with the loss of the loss-minimizing terminal wealth being equal to the loss

threshold x1. On the subset of Ω where P is equivalent to R the only possible investment is the one

in the loss-minimizing position, and on the complement we should take W ∗ as large as possible.

For case (ii) observe that I
(
λ̃2

dP
dQ0

)
is the solution to the utility maximization problem without

risk constraint. If this position satisfies the UBSR constraint, then it must also be a solution of

the optimization problem with UBSR constraint.

Finally, (iii) covers all the remaining cases. In this case, the solution can be interpreted as a

portfolio of an unconstrained solution under a modified budget constraint and two puts with strike

x̄`, i.e.,

W ∗ = I

(
λ∗2

dP

dQ0

)
+

(
x̄` − I

(
λ∗2

dP

dQ0

))+

−
(

x̄` − J

(
λ∗1

dQ1

dQ0
, λ∗2

dP

dQ0

))+

. (19)

The portfolio contains a long position in the asset I
(
λ∗2

dP
dQ0

)
which is the solution for a tighter

budget constraint, but no risk constraint. Because of the UBSR constraint, an optimizing agent
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needs to buy insurance against portfolio values below x̄`. Here, a very conservative strategy would

be the approach of a portfolio insurer who buys protection against any shortfall below the threshold

x̄`. Such an agent goes long in a put on I
(
λ∗2

dP
dQ0

)
with strike x̄`, which guarantees full protection.

In the maximization problem (9) the UBSR constraint is, however, not that tight. The agent can

still short a put on the asset J
(
λ∗1

dQ1

dQ0
, λ∗2

dP
dQ0

)
with strike x̄` and gain some additional profit from

selling this put. Since J(y1, y2) ≥ I(y2) for all (y1, y2) ∈ [0,∞)× (0,∞), the second put in (19) will

only be exercised if the first put is exercised. In this case, the gains from the first put are larger

than the losses from the second put. Hence, going short in the second put makes our investment

less costly, but we are still partly insured against losses. The final payoff is in general not bounded

from below, unless the domain of the utility function is bounded from below, that is, x̄u > −∞.

Corollary 3.5. Suppose that Assumption 3.1 holds. Let x1 > 0, x2 > x̄u, and assume that the

maximization problem (9) admits a solution W ∗. If u is not bounded from above and the optimal

wealth has finite utility, i.e., EQ0 [u(W ∗)] < ∞, then P is equivalent to R. In particular, Pe 6= ∅,
and the financial market satisfies the no free lunch with vanishing risk property (NFLVR).

Proof. According to Theorem 3.4, the optimal solution is given by W ∗. Suppose P is not equiv-

alent to R. Then Q0

{
dP
dQ0

= 0
}

> 0, and W ∗ = ∞ on
{

dP
dQ0

= 0
}

R-almost surely according to

Remark A.2 and since I(0) := limy2→0 I(y2) = ∞. Thus, EQ0 [u(W ∗)] = ∞, a contradiction. This

implies that P is equivalent to R. NFLVR follows from the first fundamental theorem of asset

pricing.

4 Examples

In the current section we focus on two examples of a financial market with a single risky stock

and a bond. We assume that the bond price is constant. The stock price is modelled either as a

geometric Brownian motion or a geometric Poisson process. For an exponential utility function,

we compare the optimal wealth in the UBSR-constrained problem with a binding risk constraint

to two benchmark cases: the solution to the classical problem without risk constraint, and the

solution to the utility maximization problem if the risk constraint is defined in terms of Value at

Risk.6

6The solution to the utility maximization problem under a VaR constraint can be found in Basak & Shapiro

(2001).
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As Bernoulli utility function we choose u(x) = 1 − e−x. The loss function shall be given by

`(x) = (ex − e−x̄`) ∨ 0, and we set x̄` = 0. The deterministic function w∗ can then easily be

calculated as

w∗(y1, y2) =





− log(y2) + log(1 + y1) if y2 > e−x̄` + y1e
−x̄` ,

x̄` if e−x̄` ≤ y2 ≤ e−x̄` + y1e
−x̄` ,

− log(y2) if y2 < e−x̄` .

4.1 A Geometric Brownian Motion Model

In our first example we assume that the stock price (St)0≤t≤T can be described by a generalized

geometric Brownian motion under the subjective measure Q0. To be precise, we assume that

B0 = (B0
t )0≤t≤T is a Brownian motion under the measure Q0. The information filtration shall be

generated by B0. The dynamics of S is described by the stochastic differential equation

dSt = St(σtdB0
t + µ0

t dt) (0 ≤ t ≤ T ),

where the stochastic mean µ0 = (µ0
t )0≤t≤T and the volatility σ = (σt)0≤t≤T with σt > 0 are suitable

stochastic processes.

In this case, the financial market is complete, and the unique absolutely continuous and equiv-

alent martingale measure P is given by the stochastic exponential

dP

dQ0
= E

(
−

∫ T

0
α0

sB
0
s

)
= exp

(
−

∫ T

0
α0

sB
0
s −

1
2

∫ T

0
(α0

s)
2ds

)
,

where α0 := µ0/σ.

Let us now define the subjective measure Q1, which is used for the risk constraint of the utility

maximization problem. Let µ1 = (µ1
t )0≤t≤T be a suitable stochastic process. Setting α1 := µ1/σ

and

B1
t := B0

t + (α0
t − α1

t )t (0 ≤ t ≤ T ),

we assume that B1 is a Brownian motion under the measure Q1. By Girsanov’s theorem, this holds

true if and only if the Radon-Nikodym density of Q1 with respect to Q0 is given by the stochastic

exponential

dQ1

dQ0
= E

(∫ T

0
(α1

s − α0
s)dB0

s

)
= exp

(∫ T

0
(α1

s − α0
s)dB0

s −
1
2

∫ T

0
(α1

s − α0
s)

2ds

)
.
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Figure 1: Distribution function of the optimal terminal wealth for

a stock price driven by geometric Brownian motion. Black line:

with UBSR constraint; gray line: without risk constraint; dashed

line: with VaR constraint.

In terms of the Q1-Brownian motion B1, the stock price S can be rewritten as

dSt = St(σtdB1
t + µ1

t dt) (0 ≤ t ≤ T ).

The measures Q0, Q1, and P completely specify the financial market model. By Theorem 3.4 we

obtain as optimal terminal wealth

W ∗ = w∗
(

λ∗1
dQ1

dQ0
, λ∗2

dP

dQ0

)

=





− log
(
λ∗2

dP
dQ0

)
+ log

(
1 + λ∗1

dQ1

dQ0

)
on

{
λ∗2

dP
dQ0

> e−x̄` + λ∗1
dQ1

dQ0
e−x̄`

}
,

x̄` on
{

e−x̄` ≤ λ∗2
dP
dQ0

≤ e−x̄` + λ∗1
dQ1

dQ0
e−x̄`

}
,

− log
(
λ∗2

dP
dQ0

)
on

{
λ∗2

dP
dQ0

< e−x̄`

}
.

Here, λ∗1 and λ∗2 have to be chosen such that W ∗ satisfies the budget constraint. Since the densities

of P and Q1 with respect to Q0 are known, the agent’s optimal wealth can explicitly be rewritten

in terms of stochastic integrals.

For α0 ≡ 0.3, α1 ≡ 0.2, T = 20, x1 = 0.18, x2 = 0.36, and a VaR-level at 0.1 under Q1,7 Figures

1 and 2 show the cumulative distribution functions and densities of the agent’s optimal wealth under
7Observe that VaR is calculated under the measure Q1 while the distribution and density functions are plotted

under the measure Q0.
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Figure 2: Density function of the optimal terminal wealth for a

stock price driven by geometric Brownian motion. Black line: with

UBSR constraint; gray line: without risk constraint; dashed line:

with VaR constraint.

different constraints under the measure Q0. We compare the solution W ∗ of the maximization

problem under the UBSR constraint (black line) with the solutions of the problem without risk

constraint (gray line) and with a VaR constraint (dashed line). Both risk constraints limit the

probability of losses considerably. The VaR constraint, however, leads to a higher probability of

very large losses compared to the solution without any risk constraint. In this case there is only

a slight change in the distribution of the VaR-optimal wealth for positive values, the main shift

takes place on the negative side where the probability of small losses is decreased whereas the

probability of very large losses is increased. Risk management based on VaR encourages insurance

against medium size losses, but favors high losses. UBSR, in contrast, reduces the risk of very high

losses. In the context of the current model, regulators and managers should hence better use UBSR

measures instead of VaR in order to prevent high losses.

4.2 A Pure Jump Model

In the second example we will investigate what happens if the stock price is driven by a pure jump

process instead of geometric Brownian motion. We restrict our attention to a stock price which is

driven by a a Poisson process N = (Nt)0≤t≤T with jump rate λ under the measure Q0. We assume
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that N generates the filtration. The process M defined by by M0
t := Nt − λt (0 ≤ t ≤ T ) is a

Q0-martingale. We assume that the stock price S is a geometric Poisson process whose dynamics

can be described by the following stochastic differential equation,

dSt = µ0Stdt + σSt−dM0
t (0 ≤ t ≤ T )

for some µ0 ∈ R and σ > 0 such that µ0/σ < λ. Then the financial market is complete, and the

unique absolutely continuous and equivalent martingale measure is given by the Radon-Nikodym-

density
dP

dQ0
= exp(α0T )

(
1− α0

λ

)NT

,

where α0 := µ0/σ.

For simplicity, we assume that the subjective probability measure Q1 is specified in the following

way. Let µ1 ∈ R be given such that µ1/σ < λ. With α1 := µ1/σ, we let Q1 be the measure under

which M1 with M1
t := M0

t + (α0 − α1)t is a martingale. Then the density of Q1 with respect to

Q0 is given by
dQ1

dQ0
= exp((α0 − α1)T )

(
1− α0 − α1

λ

)NT

.

The dynamics of the stock price can be rewritten in terms of M1:

dSt = µ1Stdt + σSt−dM1
t (0 ≤ t ≤ T ).

Letting

A :=
{

λ∗2
dP

dQ0
> e−x̄` + λ∗1

dQ1

dQ0
e−x̄`

}
,

B :=
{

e−x̄` ≤ λ∗2
dP

dQ0
≤ e−x̄` + λ∗1

dQ1

dQ0
e−x̄`

}
,

C :=
{

λ∗2
dP

dQ0
< e−x̄`

}
,

the optimal terminal wealth is given by

W ∗ = w∗
(

λ∗1
dQ1

dQ0
, λ∗2

dP

dQ0

)

=





− log(λ∗2)− α0T −NT log
(
1− α0

λ

)
+ log

(
1 + λ∗1 exp

(
(α0 − α1)T

) (
1− α0−α1

λ

)NT
)

on A,

x̄` on B,

− log(λ∗2)− α0T −NT log
(
1− α0

λ

)
on C,



19

-2 -1 1 2 3

0.2

0.4

0.6

0.8

1

Figure 3: Distribution function of the terminal wealth for a stock

price driven by a pure jump process. Black line: with UBSR con-

straint, gray line: without risk constraint, dashed line: with VaR

constraint

where λ∗1 and λ∗2 have to be chosen such that W ∗ satisfies the budget constraint.

For α0 = α1 ≡ 0.2, T = 20, x1 = 0.6, x2 = −0.9, and a VaR-level at 0.12, Figure 4 shows the

cumulative distribution functions for the optimal solutions under different constraints under the

measure Q0. We compare the solution W ∗ of the maximization problem under the UBSR constraint

(black line) with the solutions of the problem without risk constraint (gray line) and with a VaR

constraint (dashed line). The results in the case of a pure jump stock price resemble the effects

which we have already observed in the continuous model above. However, the jump of the dashed

line in zero is much larger here than in the previous example since here the VaR constraint is strong

enough to also shift mass from the negative to the positive side.

5 Conclusion

We provide a complete solution for the utility maximization problem under a joint budget and

UBSR constraint in a financial market. We do not impose any specific assumptions on the price

processes of the underlying assets and solve the problem in a general semimartingale framework.

For a complete market, the wealth maximization problem is equivalent to a dynamic portfolio op-

timization problem. We characterize precisely under which conditions the budget constraint is too
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strict and no solution can be obtained. Otherwise, there exists a solution to the maximization prob-

lem. In the latter case, the solution is explicitly determined in our article. The derivation requires

a careful analysis of the constraints. The solution is represented as a deterministic function of two

random variables. These random variables are given as multiples of Radon-Nikodym-derivatives.

These involve the pricing measure, and the subjective probability measures which are used to assess

losses and utility.

We then compare our solution to two benchmark portfolios: the optimal solutions of the utility

maximization problems without risk constraint, and with a VaR constraint, respectively. We find

that from a regulator’s or manager’s point of view one should favor the UBSR constraint over a

VaR constraint. A VaR constraint leads to large losses in the worst states. It is actually worse

than no constraint at all. Compared to both a VaR constraint and no risk constraint, the UBSR

constraint decreases the size of the losses considerably. Thus, the convex risk measure UBSR is

not only superior to VaR from the perspective of the axiomatic theory of risk measures, but also

influences investments of rational agents in a desirable way.

An interesting extension of the problems discussed in the current article would be to include

consumption in the analysis. In this case, utility depends on both terminal wealth as well as

consumption. Without risk constraint, this problem has been solved for the Hindy-Huang-Kreps

preferences in Bank & Riedel (2000) and Bank & Riedel (2001). With a risk constraint, the extended

utility maximization problem is still open. For a suitable choice of the risk constraint one should

impose dynamic consistency on risk measurements, see, e.g., Weber (2006) and Schied (2007).

6 Proofs

In this section we prove Proposition 3.2, Lemma 3.3 and Theorem 3.4. The proof of the theorem

relies on another lemma whose proof is postponed to the subsection 6.4. We remark that the

subjective measures Q0 and Q1 are equivalent to the reference measure R. Hence, a statement

holds Qi-almost surely (i = 0, 1) if and only if it holds R-almost surely.

6.1 Proof of Proposition 3.2

Proof of Proposition 3.2. We write “const” for arbitrary constants.
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(a) For x large enough, we have

0 ≤ u′(x) ≤ u(x)
x

≤ const · xb−1

This implies that for some constant d, we have

0 ≤ I(y) ≤




const · y 1
b−1 , y small,

d, otherwise .

Thus, 0 ≤ EP

(
I

(
λ dP

dQ0

))
≤ d + const · EQ0

(
dP
dQ0

(
dP
dQ0

) 1
b−1

)
< ∞. We obtain (a), observing

that 0 ≤ w∗(y1, y2) ≤ I(y2) for all y1, y2.

(b) We have −w∗ ≤ 0, 0 ≤ `, and ` is increasing. From this it follows that

0 ≤ `

(
−w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))
≤ `(0).

This implies (b).

(c) Letting W ∈ W with EQ0 (u(W )) > −∞, we get from (21) using (a) & (b) that

−∞ < EQ0 (u(W ))

− λ1

(
x1 − EQ1

[
`

(
−w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))])

− λ2

(
x2 − EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

)])

≤ EQ0

[
u

(
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))]

This implies (c).

To show that we even have u
(
w∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

))
∈ L1(Q0), observe that 0 ≤ w∗(y1, y2) ≤

I(y2) for all y1, y2. This implies with some constant e,

u(w∗(y1, y2)) ≤ u(I(y2)) ≤




const · y
b

b−1

2 , y2 small,

e, otherwise .

Thus,

EQ0

[
u

(
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))]
≤ e + const · EQ0

[(
dQ0

dP

) b
1−b

]
< ∞

(e) We have L : R→ [−x̄`, 0]. Since ` is nonnegative and increasing, we obtain that

0 ≤ `

(
L

(
c

dP

dQ1

))
≤ `(0).
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This implies (e).

(d) L
(
c dP

dQ1

)
is bounded from above by 0. Thus, we need to show that EP

(
L

(
c dP

dQ1

))
> −∞.

For W ∈ W the left hand side of (20) is bounded below by −x1. Since EQ1

(
`
(
L

(
c dP

dQ1

)))
is

finite by (e), we obtain (d).

6.2 Proof of Lemma 3.3

Proof of Lemma 3.3. For any terminal wealth W ≥ x̄u with EP [W ] ≤ x2 and any c > 0 we have

EQ1 [−`(−W )] ≤ EQ1 [−`(−W )] + c(x2 − EP [W ])

≤ ER

[
sup
x>x̄u

(
−dQ1

dR
`(−x)− c

dP

dR
x

)]
+ cx2

= −EQ1

[
`

(
L

(
c

dP

dQ1

))]
+ c

(
x2 + EP

[
L

(
c

dP

dQ1

)])
,

(20)

where the final equality follows Lemma A.1(x).

L
(
c dP

dQ1

)
converges by definition to −x̄` P -almost surely as c → 0 and to −x̄u as c →∞. Hence

by Assumption 3.1(d) and monotone convergence, for any x̄u < x2 < x̄` we can find c > 0 such

that

x2 = −EP

[
L

(
c

dP

dQ1

)]
.

Let c∗ be such a solution. Then EQ1 [−`(−W )] ≤ EQ1

[
−`

(
L

(
c∗ dP

dQ1

))]
= EQ1 [−` (−Y ∗)] for

any W ≥ x̄u that satisfies the budget constraint. Y ∗ satisfies the budget constraint and is thus a

solution to (15).

In order to show the uniqueness part, let Ỹ ≥ x̄u be any other loss-minimizing position that

satisfies the budget constraint. Since `(−x) = 0 for x ≥ x̄`, also Ỹ 1{Ỹ≤x̄`} is a loss-minimizing posi-

tion. Since ` is strictly convex on [−x̄`,−x̄u] by assumption, we have Ỹ 1{Ỹ≤x̄`} = Y ∗1{Y ∗≤x̄`} = Y ∗

R-almost surely. From the budget constraint x2 = EP [−Ỹ ] and x2 = EP [−Y ∗] = EP [−Ỹ 1{Ỹ≤x̄`}]

it now follows that Ỹ ≤ x̄` and hence Ỹ = Y ∗ P -almost surely. Thus Ỹ may differ from Y ∗ only

on the set
{

dP
dR = 0

}
.

6.3 Proof of Theorem 3.4

Proof of Theorem 3.4 . The functional W 7→ EQ0 [u(W )] is strictly concave on the convex subset

of W of financial positions with finite utility. Thus, there is at most one solution to problem (9) if

the utility of the optimal terminal wealth is finite.
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For any W ∈ W and λ1 ≥ 0, λ2 > 0, we have

EQ0 [u(W )] ≤ EQ0u[(W )] + λ1(x1 − EQ1 [`(−W )]) + λ2(x2 − EP [W ])

≤ EQ0

[
sup
x∈R

{
u(x)− λ1

dQ1

dQ0
`(−x)− λ2

dP

dQ0
x

}]
+ λ1x1 + λ2x2

= EQ0

[
u

(
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))]

+ λ1

(
x1 −EQ1

[
`

(
−w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))])

+ λ2

(
x2 −EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

)])
,

(21)

where the equality follows from Lemma A.1(ii). Observe that w∗
(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)
∈ W for any

λ1 ≥ 0 and λ2 > 0 by Assumption 3.1.

(i) This follows from Lemma 3.3. If x1 < EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
, then the constraint set is empty.

Otherwise,

W ∗ := −L

(
c∗

dP

dQ1

)
1{ dP

dR
>0} +∞ · 1{ dP

dR
=0}

solves the loss minimization problem (11). Hence it satisfies both constraints, and any other

terminal wealth satisfying both constraints equals W ∗ on the set
{

dP
dR > 0

}
. On

{
dP
dR = 0

}
we

cannot do any better than setting W ∗ equal to ∞. Hence, W ∗ solves the utility maximization

problem (9).

(ii) First note that EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
≤ EQ1

[
`
(
−I

(
λ̃2

dP
dQ0

))]
due to Lemma 3.3. If

EQ1

[
`
(
−I

(
λ̃2

dP
dQ0

))]
< x1, then the latter two summands in (21) are equal to zero for λ1 = 0,

λ2 = λ̃2. Since w∗(0, y2) = I(y2), this implies

sup
W∈W

EQ0 [u(W )] ≤ EQ0

[
u

(
I

(
λ̃2

dP

dQ0

))]
,

Thus, I
(
λ̃2

dP
dQ0

)
is a solution, and the UBSR constraint is not binding.

(iii) By Lemma 6.1 below there exist λ∗1 ≥ 0 and λ∗2 > 0 such that the latter two summands in

(21) are equal to zero. This implies that

sup
W∈W

EQ0 [u(W )] ≤ EQ0

[
u

(
w∗

(
λ∗1

dQ1

dQ0
, λ∗2

dP

dQ0

))]
.

Hence, w∗
(
λ∗1

dQ1

dQ0
, λ∗2

dP
dQ0

)
is a solution to problem (9), and both constraints are binding.
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The following lemma was used in the preceding proof of Theorem 3.4. Section 6.4 will be

devoted to its proof.

Lemma 6.1. Suppose that Assumption 3.1 holds. Let x1 > 0, x2 > x̄u, and let λ̃2 be the unique

solution to the equation x2 = EP

[
I

(
λ̃2

dP
dQ0

)]
. For x2 < x̄`, let c∗ > 0 be defined as in Lemma

3.3.

Assume that either x2 ≥ x̄` or , if x2 < x̄`, x1 > EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
. If EQ1

[
`
(
−I

(
λ̃2

dP
dQ0

))]
≥

x1, then there exist λ1 ≥ 0, λ2 > 0 such that

x1 = EQ1

[
`

(
−w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

))]

and

x2 = EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

)]
.

6.4 Proof of Lemma 6.1

In the current section we will prove Lemma 6.1. We will always suppose that Assumption 3.1 holds,

and fix a level x2 ∈ (x̄u,∞) for the budget constraint. For λ1 ≥ 0, we let

W ∗(λ1) := w∗
(

λ1
dQ1

dQ0
, λ2

dP

dQ0

)
, (22)

where λ2 is chosen such that the budget constraint x2 = EP [W ∗(λ1)] is satisfied.

Lemma 6.2. For each λ1 ≥ 0 the random variable W ∗(λ1) is R-almost surely well defined.

Proof. On
{

dP
dR = 0

}
=

{
dP
dQ0

= 0
}

we have W ∗(λ1) = +∞ according to Remark A.2. Thus, it

suffices to show that W ∗(λ1) is P -almost surely well defined.

Let λ1 ≥ 0 be fixed. The existence of a λ2 > 0 for which x2 = EP [W ∗(λ1)] follows from

Lemma A.1(v) and (vi), the continuity of w∗, Assumption 3.1(a) and monotone convergence.

Suppose now that

x2 = EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

)]
= EP

[
w∗

(
λ1

dQ1

dQ0
, λ̂2

dP

dQ0

)]
. (23)

for λ2 ≥ λ̂2. For fixed first argument, the function w∗ is decreasing in its second argument by

Lemma A.1(v), thus

w∗
(

λ1
dQ1

dQ0
, λ2

dP

dQ0

)
≤ w∗

(
λ1

dQ1

dQ0
, λ̂2

dP

dQ0

)
. (24)

Because of condition (23), the preceding inequality (24) must P -almost surely be an equality. This

implies that W ∗ is P -almost surely well defined.
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Lemma 6.3. For each λ1 ≥ 0 we let λ(λ1) be the supremum of all λ2 > 0 such that the budget

constraint

x2 = EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

)]

is satisfied. Then λ(λ1) ∈ (0,∞) and the supremum is attained. Moreover, the function λ(λ1)/λ1

is decreasing for λ1 ∈ (0,∞). In particular,

lim
λ1→∞

λ(λ1)
λ1

∈ [0,∞)

exists.

Proof. By Lemma A.1(vi), w∗
(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)
converges to x̄u as λ2 →∞ and diverges to infinity

as λ2 → 0. Moreover, EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)]
is continuous in λ2 by monotone convergence and

Assumption 3.1(a). This implies the first claim, since x̄u < x2 < ∞. Furthermore, λ(λ1) is indeed

a maximum, since EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)]
is continuous in λ2.

In order to show that λ(λ1)/λ1 is decreasing, let λ′1 > λ1 > 0. Let α := λ′1/λ1 > 1. It follows

from Lemma A.1 (vii) that

w∗
(

λ′1
dQ1

dQ0
, λ(λ′1)

dP

dQ0

)
= w∗

(
αλ1

dQ1

dQ0
, αλ1

λ(λ′1)
λ′1

dP

dQ0

)
≤ w∗

(
λ1

dQ1

dQ0
, λ1

λ(λ′1)
λ′1

dP

dQ0

)
.

This implies that

x2 = EP

[
w∗

(
λ′1

dQ1

dQ0
, λ(λ′1)

dP

dQ0

)]
≤ EP

[
w∗

(
λ1

dQ1

dQ0
, λ1

λ(λ′1)
λ′1

dP

dQ0

)]
.

Suppose now that λ(λ′1)/λ′1 > λ(λ1)/λ1. Since w∗ is decreasing in its second argument with

first argument fixed, there exists λ2 ≥ λ1
λ(λ′1)

λ′1
> λ(λ1) such that

x2 = EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

)]
,

contradicting the maximality of λ(λ1).

In order to avoid any ambiguity, we will always work with the following version of the stochastic

process (W ∗(λ1))λ1≥0:

W ∗(λ1) := w∗
(

λ1
dQ1

dQ0
, λ(λ1)

dP

dQ0

)
(λ1 ≥ 0).

Lemma 6.4. Let λ1 ≥ 0. If (λ(n)
1 )n∈N is a sequence with λ

(n)
1 → λ1, then there exists a subsequence

(λ(nj)
1 )n∈N such that W ∗(λ(nj)) → W ∗(λ1) R-almost surely.
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Proof. For n ∈ N we choose λ
(n)
2 = λ(λ(n)

1 ) > 0. In a first step we show that this sequence is both

bounded and bounded away from zero.

Suppose that the sequence (λ(n)
2 )n is unbounded. Then there exists an increasing subsequence

λ
(nj)
2 which diverges to infinity as j →∞. Let λ̂ := maxn∈N λ

(n)
1 . By Lemma A.1(v)&(vi),

W ∗
(
λ

(nj)
1

)
≤ w∗

(
λ̂1

dQ1

dQ0
, λ

(nj)
2

dP

dQ0

)
j→∞
↘ x̄u.

Due to Assumption 3.1(a), the monotone convergence theorem implies that x2 ≤ x̄u, a contradic-

tion. Thus, (λ(n)
2 )n is bounded.

Suppose that zero is an accumulation point of (λ(n)
2 )n. Then there exists a decreasing subse-

quence λ
(nj)
2 which converges to zero as j →∞. Let λ̂ := minn∈N λ

(n)
1 . By Lemma A.1(v)&(vi),

W ∗
(
λ

(nj)
1

)
≥ w∗

(
λ̂1

dQ1

dQ0
, λ

(nj)
2

dP

dQ0

)
j→∞
↗ ∞.

The monotone convergence theorem implies that x2 = ∞, a contradiction. Thus, (λ(n)
2 )n is bounded

away from zero.

For any convergent sequence (λ(n)
1 )n with limit λ1 we can now find a subsequence (λ(nj)

1 ) such

that (λ(nj)
2 ) is convergent with limit, say, λ2 ∈ (0,∞). Hence, limj→∞W ∗

(
λ

(nj)
1

)
= w∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)

R-almost surely on {dP/dQ0 > 0}. But on {dP/dQ0 = 0} we have W ∗
(
λ

(nj)
1

)
= ∞ = w∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)
.

Thus we obtain R-almost sure convergence on Ω.

Furthermore, choosing λ̃1 := minj∈N λ
(nj)
1 , λ̂1 := maxj∈N λ

(nj)
1 ∈ [0,∞), and λ̃2 := maxj∈N λ

(nj)
2 , λ̂2 :=

minj∈N λ
(nj)
2 ∈ (0,∞), we have the bounds

w∗
(

λ̃1
dQ1

dQ0
, λ̃2

dP

dQ0

)
≤ W ∗(λ(nj)

1 ) ≤ w∗
(

λ̂1
dQ1

dQ0
, λ̂2

dP

dQ0

)
.

By Lebesgue’s dominated convergence theorem and Assumption 3.1(a) we obtain therefore,

x2 = lim
j→∞

EP

[
W ∗

(
λ

(nj)
1

)]
= EP

[
w∗

(
λ1

dQ1

dQ0
, λ2

dP

dQ0

)]
.

By Lemma 6.2, this implies W ∗(λ1) = w∗
(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)
.

For the proof of the main result we will need to investigate the function

k : λ1 7→ EQ1 [` (−W ∗ (λ1))] .
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Lemma 6.5. The function k is continuous.

Proof. Let (λ(n)
1 )n be a sequence of non-negative reals converging to λ1. We need to show that any

accumulation point k∗ of (k(λ(n)
1 ))n is equal to k(λ1). By Lemma 6.4 we can choose a subsequence

(λ(nj)
1 ) such that both k(λ(nj)

1 ) → k∗ and W ∗(λ(nj)
1 ) → W ∗(λ1) R-almost surely. We have

lim
j→∞

k(λ(nj)
1 ) = lim

j→∞
EQ1

[
`
(
−W ∗

(
λ

(nj)
1

))]
(∗)
= EQ1 [`(−W ∗(λ1))] = k(λ1).

Equality (∗) follows from the dominated convergence theorem, since for all j ∈ N we have the

inequality

0 ≤ `
(
−W ∗(λ(nj)

1 )
)
≤ `

(
−w∗

(
λ̂1

dQ1

dQ0
, λ̂2

dP

dQ0

))
(25)

with λ̂1 = minj λ
(nj)
1 , λ̂2 = maxj λ

(nj)
2 . The upper bound in (25) is Q1-integrable by Assump-

tion 3.1(b).

Recall that L is the generalized inverse of the derivative of the loss function `, see equation (12).

L is a continuous function which is strictly increasing on [`′(−x̄`+), `′(−x̄u)]. With this function

we can characterize the asymptotic behavior of W ∗(λ1), `(−W ∗(λ1)), and of the expectations of

these quantities for λ1 →∞.

Lemma 6.6. Let c∗ := limλ1→∞ λ(λ1)/λ1.

(i) Suppose x2 > x̄`. In this case, we have c∗ = 0 and limλ1→∞ k(λ1) = 0.

(ii) Suppose x̄u < x2 < x̄`.

In this case, we have c∗ > 0 and

lim
λ1→∞

W ∗(λ1) = −L

(
c∗

dP

dQ1

)
P − almost surely.

Furthermore, c∗ is a solution to the equation

x2 = −EP

[
L

(
c

dP

dQ1

)]
, (26)

and

lim
λ1→∞

k(λ1) = EQ1

[
`

(
L

(
c∗

dP

dQ1

))]

(iii) If x2 = x̄`, then limλ1→∞ k(λ1) = 0.
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Proof. (o) Let c̃ : R+ → R+ be decreasing with limy1→∞ c̃(y1) = c > 0. We will repeatedly use the

fact that

w∗
(

λ1
dQ1

dQ0
, λ1c̃(λ1)

dP

dQ0

)
λ1→∞−→ −L

(
c

dP

dQ1

)
P − a.s. (27)

and

`

(
−w∗

(
λ1

dQ1

dQ0
, λ1c̃(λ1)

dP

dQ0

))
λ1→∞−→ `

(
L

(
c

dP

dQ1

))
R− a.s. (28)

If c̃(λ1) ≡ c, then the convergence is monotone by Lemma A.1(vii) and

EP

[
w∗

(
λ1

dQ1

dQ0
, λ1c

dP

dQ0

)]
λ1→∞↘ −EP

[
L

(
c

dP

dQ1

)]
(29)

and

EQ1

[
`

(
−w∗

(
λ1

dQ1

dQ0
, λ1c

dP

dQ0

))]
λ1→∞↗ EQ1

[
`

(
L

(
c

dP

dQ1

))]
. (30)

The statements (27)-(30) follow from Lemma A.1(ix) in the following way: Since Q1 ∼ Q0 ∼ R,

we have R-almost surely

w∗
(

λ1
dQ1

dQ0
, λ1c̃(λ1)

dP

dQ0

)
= w∗

(
λ1

dQ1

dQ0
, λ1c̃(λ1)

dQ1

dQ0

dP

dQ1

)
.

This expression converges to −L
(
c dP

dQ1

)
R-almost surely on

{
dP
dQ1

> 0
}

due to Lemma A.1(ix),

which implies (27). Furthermore, on
{

dP
dQ1

= 0
}

we have w∗
(
λ1

dQ1

dQ0
, λ1c̃(λ1)dQ1

dQ0

dP
dQ1

)
= ∞ and

−L
(
c dP

dQ1

)
= x̄`, hence `

(
−w∗

(
λ1

dQ1

dQ0
, λ1c̃(λ1) dP

dQ0

))
= 0 = `

(
L

(
c dP

dQ1

))
, and (28) follows. (29)

and (30) follow now from Lemma A.1(ix), Assumption 3.1(a)&(b), and the monotone convergence

theorem.

We will now prove part (i). Let x2 > x̄`.

(i-a) Suppose c∗ > 0. By Lemma 6.3 we have λ(λ1)/λ1 > c∗/2 > 0 for λ1 > 0. Thus by

Lemma A.1 (v)&(vii), for λ1 ≥ λ′1 > 0:

W ∗(λ1) ≤ w∗
(

λ1
dQ1

dQ0
,
c∗λ1

2
dP

dQ0

)
≤ w∗

(
λ′1

dQ1

dQ0
,
c∗λ′1

2
dP

dQ0

)
.

From (29) we obtain

x2 = EP [W ∗(λ1)] ≤ EP

[
w∗

(
λ′1

dQ1

dQ0
,
c∗λ′1

2
dP

dQ0

)]
λ′1→∞↘ EP

[
−L

(
c∗

2
· dP

dQ1

)]
≤ x̄`,
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a contradiction. Thus, c∗ = 0.

(i-b) Since c∗ = 0, it follows from Lemma A.1(v) that for any ε > 0 and λ1 large enough,

W ∗(λ1) ≥ w∗
(
λ1

dQ1

dQ0
, ελ1

dP
dQ0

)
. With k(λ1) = EQ1 [`(−W ∗(λ1))], this implies

0 ≤ lim inf
λ1→∞

k(λ1) ≤ lim sup
λ1→∞

k(λ1)

≤ lim
λ1→∞

EQ1

[
`

(
−w∗

(
λ1

dQ1

dQ0
, ελ1

dP

dQ0

))]
= EQ1

[
`

(
L

(
ε

dP

dQ1

))]

due to (30). Furthermore the dominated convergence theorem and Assumption 3.1(e) imply

lim
ε→0

EQ1

[
`

(
L

(
ε

dP

dQ1

))]
= 0,

since ` and L are increasing. Thus, limλ1→∞ k(λ1) = 0.

We will now prove part (ii). Let x2 < x̄`.

(ii-a) Let us first show that x2 < x̄` implies c∗ > 0. Suppose c∗ = 0. Then for every ε > 0 there

exists λ′1 > 0 such that for λ1 ≥ λ′1

W ∗(λ1) ≥ w∗
(

λ1
dQ1

dQ0
, λ1ε

dP

dQ0

)
. (31)

From (29) we obtain for λ1 ≥ λ′1

x2 = EP [W ∗(λ1)] ≥ EP

[
w∗

(
λ1

dQ1

dQ0
, λ1ε

dP

dQ0

)]
λ1→∞↘ EP

[
−L

(
ε

dP

dQ1

)]
.

Thus, the monotone convergence theorem and Assumption 3.1(e) imply

x2 ≥ lim
ε→0

EP

[
−L

(
ε

dP

dQ1

)]
= x̄`,

a contradiction. This implies c∗ > 0. The first result now follows from (27).

(ii-b) We will now show that c∗ = limλ1→∞ λ(λ1)/λ1 is a solution of equation (26). It is not

difficult to see that for λ1 > n ∈ N we have

−L

(
λ(n)

n
· dP

dQ1

)
(1)

≤ w∗
(

λ1
dQ1

dQ0
,
λ(n)

n
· λ1 · dP

dQ0

)
(2)

≤ W ∗(λ1)

(3)

≤ w∗
(

λ1
dQ1

dQ0
, cλ1

dP

dQ0

)
(4)

≤ w∗
(

dQ1

dQ0
, c

dP

dQ0

)
.

(32)

Inequality (1) follows from Lemma A.1(ix). Inequalities (2) and (3) follow from Lemma A.1(v)

and the fact that λ(n)
n · λ1 ≥ λ(λ1) ≥ cλ1 for λ1 > n, since λ(λ1)/λ1 decreases to c as λ1 → ∞.

Inequality (4) follows from Lemma A.1 (vii).
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Due to (27) and Assumption 3.1(a)&(d) we may apply the dominated convergence theorem to

obtain

x2 = EP [W ∗(λ1)] → EP

[
−L

(
c∗

dP

dQ1

)]
.

Thus, c∗ is a solution to equation (26).

Analogously, due to (28) and Assumption 3.1(b)&(e) we may apply the dominated convergence

theorem to obtain

lim
λ1→∞

k(λ1) = lim
λ1→∞

EQ1 [` (−W ∗(λ1))] = EQ1

[
`

(
L

(
c∗

dP

dQ1

))]
.

(iii) Let x2 = x̄`. If c∗ = 0, argue as in part (i-b) to verify the claim. If c∗ > 0, argue as

in part (ii-b) to show that x2 = EP

[
−L

(
c∗ dP

dQ1

)]
. Since −L

(
c∗ dP

dQ1

)
≤ x̄` = x2, this implies

−L
(
c∗ dP

dQ1

)
= x̄` P -almost surely and hence Q1-almost surely on

{
dP
dQ1

> 0
}

. But since −L(0) =

x̄`, it holds Q1-almost surely on Ω.

Analogously to part (ii-b), we obtain finally

lim
λ1→∞

k(λ1) = EQ1

[
`

(
L

(
c∗

dP

dQ1

))]
= EQ1 [`(−x̄`)] = 0.

We summarize the asymptotic behavior of k in the following corollary.

Corollary 6.7. Suppose that Assumption 3.1 holds and let x2 > x̄u. Let λ̃2 be the unique solution

to the equation

x2 = EP

[
I

(
λ̃2

dP

dQ0

)]
.

The asymptotic behavior of k can be characterized in the following way.

lim
λ1→0

k(λ1) = EQ1

[
`

(
−I

(
λ̃2

dP

dQ1

))]
,

lim
λ1→∞

k(λ1) =





0 if x2 ≥ x̄`,

EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
if x2 < x̄`,

where c∗ is a solution of (26).

Proof. Note that W ∗(0) = I
(
λ̃2

dP
dQ0

)
. Hence the first claim follows from Lemma 6.5. The second

one is only a reformulation of Lemma 6.6.
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Finally, we arrive at the following conclusion, which finishes the proof of Lemma 6.1.

Corollary 6.8. Suppose that Assumption 3.1 holds and let x2 > x̄u. By R(k) we denote the range

of k. It holds (a, b) ⊆ R(k) with

a =





0 if x2 ≥ x̄`,

EQ1

[
`
(
L

(
c∗ dP

dQ1

))]
, if x2 < x̄`,

b = EQ1

[
`

(
−I

(
λ̃2

dP

dQ0

))]
,

where λ̃2 and c∗ are chosen as in Corollary 6.7.

Proof. The proof is immediate from Lemma 6.5 and Corollary 6.7.

A Properties of the deterministic function w∗

Here we will discuss how the function w∗, that gives us the optimal terminal wealth, can be obtained and describe

its properties. For this purpose we consider a family of functions gy1,y2 with y1, y2 ≥ 0, defined by

gy1,y2(x) := u(x)− y1`(−x)− y2x.

In the following we will sometimes drop the indices y1, y2 if there is no danger of confusion.

Lemma A.1.

(i) gy1,y2 is strictly concave and thus continuous on its essential domain dom gy1,y2 = dom u.

(ii) gy1,y2 attains its supremum on R if and only if y2 > 0. In this case, the maximizer is unique and equals

w∗(y1, y2) =





J(y1, y2) if y2 > u′(x̄`) + y1`
′(−x̄`+),

x̄` if u′(x̄`) ≤ y2 ≤ u′(x̄`) + y1`
′(−x̄`+),

I(y2) if y2 < u′(x̄`).

(33)

Here, J(y1, y2) denotes the unique solution to the equation u′(x) + y1`
′(−x) = y2 for the case that y2 >

u′(x̄`) + y1`
′(−x̄`+), and I := (u′)−1.

(iii) If x̄` = ∞, (33) simplifies to

w∗(y1, y2) = J(y1, y2).

(iv) The function w∗ : [0,∞)× (0,∞) → (x̄u,∞), defined in (33), is continuous.

(v) w∗(y1, y2) is decreasing in y2 for y1 ≥ 0 fixed, and increasing in y1 for y2 > 0 fixed.

(vi) w∗(y1, y2) converges to x̄u ∈ R ∪ {−∞} as y2 →∞ and to infinity as y2 → 0 for fixed y1 ≥ 0.

(vii) If α ≥ 1, then w∗(αy1, αy2) ≤ w∗(y1, y2).
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Figure 4: w∗ as a function of y2

(viii) Let L : R→ [−x̄`,∞) be the generalized inverse of the derivative of the loss function `, i.e.,

L(y) =





−x̄u if y ≥ `′(−x̄u),

(`′)−1(y) if `′(−x̄`+) < y < `′(−x̄u),

−x̄` if y ≤ `′(−x̄`+).

(34)

L is a continuous function which is strictly increasing on [`′(−x̄`+), `′(−x̄u)].

If e > 0 is such that `′(−x̄`+) < e < `′(−x̄u), and µ := u′(−L(e)), then we have for all y1 ≥ 0,

w∗(0, µ) = w∗(y1, µ + y1e).

(ix) Let c̃ : R+ → R+ be decreasing with limy1→∞ c̃(y1) = c > 0. Then

lim
y1→∞

w∗(y1, c̃(y1) · y1) = −L(c) ∈ [x̄u, x̄`].

Moreover, w∗(y1, cy1) converges for y1 →∞ to −L(c) monotonously from above.

(x) We have

sup
x>x̄u

{−y1`(−x)− y2x} = −y1`

(
L

(
y2

y1

))
+ y2L

(
y2

y1

)
.

Figure 4 shows an example of w∗(λ∗1y1, λ
∗
2y2) as a function of y2, where λ∗1 and λ∗2 are the parameters from

Theorem 3.4 such that W ∗ satisfies the constraints. We chose again the exponential utility function u(x) = 1− e−x.

The black line shows the terminal wealth with the USBR constraint, where `(x) = (ex − e−x̄`) ∨ 0. The gray line

shows w∗(0, λ̃2y2) = I(λ̃2), which gives the optimal terminal wealth without risk constraint. The dashed line shows

the optimal terminal wealth with a VaR constraint. For the latter case the solution can be found in Basak & Shapiro

(2001).
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Proof of Lemma A.1. (i) The sum of the strictly concave function u and the concave function −`(−·) is strictly

concave, and dom g = dom u ∩ dom `(−·) = dom u.

(ii)&(iii) Suppose first that y2 = 0. Then g(x) = u(x) − y1`(−x), and g does not attain its supremum on R. If

conversely y2 > 0, then

g′(x) =





u′(x) + y1`
′(−x)− y2 if x < x̄`,

u′(x)− y2 if x > x̄`.

Hence by the Inada conditions (U1) and (U2) we have

lim
x↘x̄u

g′(x) = ∞ > 0 and lim
x→∞

g′(x) = −y2 < 0

because ` is convex, continuous, and increasing and hence `′(−∞) = 0 also in the case x̄` = ∞. Since g is strictly

concave on its essential domain, this implies that g has a unique maximum.

Next we prove that the maximizer of g is given by w∗ as defined in (33). Suppose first that x̄` < ∞.

If y2 > u′(x̄`) + y1`
′(−x̄`+), then g′(x̄`−) < 0. It follows that g is decreasing in a neighborhood of x̄`. Thus,

w∗(y1, y2) < x̄`. Since g is strictly concave and continuously differentiable on the interval (x̄u, x̄`), w∗(y1, y2) is

characterized as the unique solution of g′(x) = 0 with x ∈ (x̄u, x̄`). This implies that w∗(y1, y2) = J(y1, y2).

If y2 < u′(x̄`), then g′(x̄`+) > 0. It follows that g is increasing in a neighborhood of x̄`. Thus, w∗(y1, y2) > x̄`.

In this case, the first order condition implies that w∗(y1, y2) = I(y2).

If u′(x̄`) ≤ y2 ≤ u′(x̄`) + y2`
′(−x̄`+), then g′(x̄`−) ≥ 0 ≥ g′(x̄`+). Since g is strictly concave, we obtain that

w∗(y1, y2) = x̄`.

Next, let us assume that x̄` = ∞. Then g(x) = u(x) − y1`(−x) − y2x for all x ∈ dom g, thus w∗(y1, y2) =

J(y1, y2) by the first order condition which proves (iii). Moreover, by our assumptions on u and `, the condition

y2 > u′(x̄`) + y1`
′(−x̄`+) is trivially satisfied in this case.

(iv) In equation (33) we distinguish three regions. First, we demonstrate that w∗ is continuous on

D := {(y1, y2) : y2 ≥ u′(x̄`) + y1`
′(−x̄`+), y1 ≥ 0, y2 > 0}.

The function h : [u′(x̄`),∞) → R+, µ 7→ `′(−I(µ)) is continuous and strictly increasing. For each µ ∈ [u′(x̄`),∞) the

graph Γµ of the linear function y1 7→ µ + h(µ)y1, y1 ∈ R+, defines a ray in D. D equals the disjoint union of the rays

Γµ, µ ∈ [u′(x̄`),∞), and we may continuously project D along these rays onto {0} × [u′(x̄`),∞). By π(y1, y2) we

denote the projection of (y1, y2) ∈ D, i.e., µ ∈ [u′(x̄`),∞) such that y2 = µ + h(µ)y1. Since π and I are continuous,

the mapping (y1, y2) 7→ I(π(y1, y2)) is continuous. Observe that

u′(I(π(y1, y2)) + `′(−I(π(y1, y2))) · y1 = π(y1, y2) + h(π(y1, y2)) · y1 = y2.

Thus, I(π(y1, y2)) = w∗(y1, y2).

Second, observe that J(y1, y2) = x̄` if y2 = u′(x̄`) + y1`
′(−x̄`+), and that I(y2) = x̄` if y2 = u′(x̄`). Altogether,

it follows that w∗ is a continuous function.

(v) Simply note that both u′(x) and `′(−x) are decreasing in x.

(vi) For y1 ≥ 0 fixed, u′(x) + y1`
′(−x) is strictly decreasing and continuous in x on the interval (x̄u, x̄`) with

limx↘x̄u (u′(x) + y1`
′(−x)) = ∞. This implies w∗(y1, y2) → x̄u as y2 →∞.
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Moreover, limy2→0 w∗(y1, y2) = limy2→0 I(y2) = ∞.

(vii) We first show the claim for y2 ≥ u′(x̄`) + y1`
′(−x̄`+). Since w∗(y1, y2) = x̄` for y2 = u′(x̄`) + y1`

′(−x̄`+)

and w∗(y1, y2) ≤ x̄` for y2 > u′(x̄`) + y1`
′(−x̄`+), we may restrict our attention to y2 > u′(x̄`) + y1`

′(−x̄`+). Then

αy2 > αu′(x̄`) + αy1`
′(−x̄`+) ≥ u′(x̄`) + αy1`

′(−x̄`+).

Thus, w∗(y1, y2) is the unique solution of u′(x) + y1`
′(−x) = y2, and w∗(αy1, αy2) is the unique solution of u′(x) +

αy1`
′(−x) = αy2. This implies

αy2 = αu′(w∗(y1, y2)) + αy1`
′(−w∗(y1, y2)) > u′(w∗(y1, y2)) + αy1`

′(−w∗(y1, y2)).

Since u′(x) and `′(−x) are decreasing in x on (x̄u, x̄`), we obtain w∗(αy1, αy2) ≤ w∗(y1, y2).

If y2 ≤ u′(x̄`) + y1`
′(−x̄`+), w∗(y1, y2) depends on y2 only and is decreasing in y2. Now the result follows easily.

(viii) The properties of L follow immediately from our assumptions on `.

In order to derive the last claim, observe that w∗(0, µ) is the unique solution of u′(x) = µ or, equivalently,

x = I(µ). If e > `′(−x̄`+), then µ = u′(−L(e)) > u′(x̄`). Thus, µ + y1e > u′(x̄`) + y1`
′(−x̄`+). This implies that

w∗(y1, µ + y1e) is the unique solution to u′(x) + y1`
′(−x) = µ + y1e. On the other hand, since e < `′(−x̄u),

u′(w∗(0, µ)) + y1`
′(−w∗(0, µ)) = µ + y1`

′(−I(µ)) = µ + y1`
′[−I(u′(−L(e)))] = µ + y1e,

and w∗(0, µ) is also the unique solution to u′(x) + y1`
′(−x) = µ + y1e. Thus, w∗(0, µ) = w∗(y1, µ + y1e).

(ix) If c ≥ `′(−x̄u), then c̃(y1) ≥ c > u′(x̄`)/y1 + `′(−x̄`+) for y1 large enough because `′(−x̄u) > `′(−x̄`+).

Therefore, w∗(y1, c̃(y1)y1) satisfies

u′(w∗(y1, c̃(y1)y1)) + y1`
′(−w∗(y1, c̃(y1)y1)) = c̃(y1)y1

for y1 large enough. Due to c̃(y1) ≥ c ≥ `′(−x̄u), this implies

u′(w∗(y1, c̃(y1)y1)) ≥ y1[`
′(−x̄u)− `′(−w∗(y1, c̃(y1)y1))]

and hence limy1→∞ w∗(y1, c̃(y1)y1) = x̄u = −L(c) due to the Inada condition (U2) and since `′ is strictly increasing

in −x̄u.

Now assume that c < `′(−x̄u). We show that w∗(y1, c̃(y1)y1) is bounded from below away from x̄u for large

enough y1. For this purpose choose e such that `′(−x̄`+) < e < `′(−x̄u) and e > c̃(y1) for y1 large enough. It follows

from (viii) that for all such y1 we have

x̄u < w∗(0, µ) = w∗(y1, µ + y1e) ≤ w∗(y1, µ + c̃(y1)y1) ≤ w∗(y1, c̃(y1)y1),

where µ = u′(−L(e)). This proves boundedness from below.

For y1 large enough, we have c̃(y1)y1 ≥ u′(x̄`). For any such y1 we distinguish two cases. If

c̃(y1)y1 ≤ u′(x̄`) + y1`
′(−x̄`+),

then w∗(y1, c̃(y1)y1) = x̄`
(∗)
= −L(z(y1)), where

z(y1) := c̃(y1)− u′(w∗(y1, c̃(y1)y1))

y1
.
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Equation (∗) can easily be checked, since w∗(y1, c̃(y1)y1) = x̄`.

If c̃(y1)y1 > u′(x̄`) + y1`
′(−x̄`+), then

u′(w∗(y1, c̃(y1)y1)) + y1`
′(−w∗(y1, c̃(y1)y1)) = c̃(y1)y1,

thus w∗(y1, c̃(y1)y1) = −L(z(y1)).

Since w∗(y1, c̃(y1)y1) is bounded away from x̄u for y1 large enough, we have in both cases that u′(w∗(y1, c̃(y1)y1))

is bounded, thus z(y1) → c as y1 →∞. The continuity of L implies

lim
y1→∞

w∗(y1, c̃(y1)y1) = −L(c) ≥ w∗(0, µ) > x̄u.

By definition of L we have −L(c) ≤ x̄`.

Finally, observe that w∗(y1, cy1) is decreasing in c by (vii).

(x) This follows from the definition of L and basic calculus, similar to the proof of (ii).

Remark A.2. By continuity of w∗ and Lemma A.1(vi) we may define w∗(y1,∞) := x̄u and w∗(y1, 0) := ∞ for

y1 ≥ 0.
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