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Abstract

In this article we consider the portfolio selection problem of an agent with ro-
bust preferences in the sense of Gilboa & Schmeidler (1989) in an incomplete market.
Downside risk is constrained by a robust version of utility-based shortfall risk. We
derive an explicit representation of the optimal terminal wealth in terms of certain
worst case measures which can be characterized as minimizers of a dual problem. This
dual problem involves a three-dimensional analogue of f-divergences which generalize
the notion of relative entropy.
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1 Introduction

The measurement and management of the downside risk of portfolios is a key issue for

financial institutions. The industry standard Value at Risk (VaR) shows serious deficiencies

as a measure of the downside risk. It penalizes diversification in many situations and does

not take into account the size of very large losses exceeding the value at risk. These problems

motivated intense research on alternative risk measures whose foundation was provided by

Artzner, Delbaen, Eber & Heath (1999). An excellent summary of recent results can be

found in the book by Föllmer & Schied (2004).

While axiomatic results are an important first step towards better risk management,

an analysis of the economic implications of different approaches to risk measurement is

indispensable. In the current article we investigate the agent’s optimal payoff profile under
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a joint budget and risk measure constraint. A first step in this direction has already been

made by Gundel & Weber (2005) where the utility maximization problem is analyzed for

fixed probabilistic models. In contrast, the current paper considers the situation of model

uncertainty and extends the results of Gundel & Weber (2005).

Here model uncertainty has three dimensions. The first dimension concerns the prefer-

ences of the maximizing agent. In most articles on optimal portfolio selection, preferences

are represented by von Neumann-Morgenstern utility functionals. These utility functionals

can be expressed in terms of a Bernoulli utility function and a single subjective probability

measure. A more general class of preferences can be constructed if the single representing

probability measure is replaced by a set of subjective measures. Robust utility functionals

of this type have been analyzed by Gilboa & Schmeidler (1989). We will study the portfolio

selection problem on this level of generality. Here, we will always assume that the essential

domain of the Bernoulli utility function is bounded from below.

The second dimension of model uncertainty is related to the budget constraint. In a

complete market, this constraint can be formalized in terms of an expectation under the

single pricing measure. In an incomplete market the set of equivalent martingale measures

is infinite, and the analysis of the budget constraint requires more care. We consider the

case of a financial market that is not necessarily complete.

Finally, the measurement of the downside risk can also be a source of model uncer-

tainty. We define the risk constraint in terms of utility-based shortfall risk (UBSR). This

risk measure does not share the deficiencies of Value at Risk. For a detailed description of

its properties, we refer to Föllmer & Schied (2004), Weber (2006), Dunkel & Weber (2005),

and Giesecke, Schmidt & Weber (2005). The definition of shortfall risk involves a subjective

probability measure. The choice of this measure can be a third source of model uncertainty.

In this article we consider the portfolio selection problem of an agent with robust

preferences in the sense of Gilboa & Schmeidler (1989) in an incomplete market. Downside

risk is constrained by a robust version of UBSR. We derive an explicit representation of the

optimal terminal wealth in terms of certain worst case measures which can be characterized

as minimizers of a dual problem. This dual problem involves a three-dimensional analogue

of f-divergences which generalize the notion of relative entropy.

The paper is organized as follows. Section 2 describes the agent’s preferences, budget

and risk constraint in detail. The portfolio selection problem is stated in Section 2.4. The

interpretation of the budget constraint in an incomplete market is further analyzed in Sec-

tion 2.5. Section 3 explains the notion of extended martingale measures which will be used in

our characterization of optimal wealth. Extended martingale measures have been introduced

by Föllmer & Gundel (2006) and correspond exactly to the class of supermartingales which

appear in the duality approach of Kramkov & Schachermayer (1999). Section 4 describes

the solution in the absence of model uncertainty and summarizes the findings of Gundel &

Weber (2005). In addition, Section 4.2 presents a dual characterization which provides the

basis for the solution of the robust problem. The robust problem in an incomplete market is

solved in Section 5. To improve readability, some of the proofs are postponed to Section 6.
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2 The Constrained Maximization Problem

We consider a market over a finite time horizon [0, T ] for T > 0 which consists of d + 1

assets, one bond and d stocks. W.l.o.g. we suppose that prices are discounted by the bond,

i.e., that the bond price is constant and equal to 1. The price processes of the stocks are

given by an Rd-valued semimartingale S on a filtered probability space (Ω,F , (Ft)0≤t≤T , R)

satisfying the usual conditions, where F = FT ; see Protter (2004), page 3.

An F -measurable random variable will be interpreted as the value of a financial posi-

tion or contingent claim at maturity T . Positions which are R-almost surely equal can be

identified. The set of all terminal financial positions is denoted by L0.

2.1 Utility functionals

The classical problem of expected utility maximization consists in maximizing the utility

functional

U(X) = EQ0 [u(X)]

over all feasible financial positions X, where Q0 is some subjective probability measure

which is equivalent to the reference measure R and u : R→ R∪{−∞} is a Bernoulli utility

function.

Expected utility is a numerical representation of certain preferences which have been

characterized by von Neumann & Morgenstern (1944) and Savage (1954). The utility func-

tional is defined in terms of the single probability measure Q0. A more general class of

preferences admits a robust representation as suggested by Gilboa & Schmeidler (1989). In-

stead of a single measure Q0, a set Q0 of subjective or model measures provides a numerical

representation of these preference orders via a robust utility functional

(1) U(X) := inf
Q0∈Q0

EQ[u(X)].

These more general preferences resolve several well-known paradoxa which arise in the clas-

sical framework; see, for instance, Gilboa & Schmeidler (1989) or Föllmer & Schied (2004).

The representation (1) suggests also another interpretation. An agent with Bernoulli

utility functional u is evaluating her expected utility, but is uncertain about the correct

subjective probability measure. Instead the agent is faced with a whole set of conceivable

probabilities. In this situation of model uncertainty, she considers the infimum of all possible

expectations in order to be on the safe side.

In the current article we consider the problem of maximizing robust utility under a joint

budget and downside risk contraint. We impose some standard assumptions on the Bernoulli

utility function u. We suppose that the utility function u : R → R ∪ {−∞} is strictly

increasing, strictly concave, continuously differentiable with existing second derivative in

the interior of dom u := {x ∈ R : u(x) > −∞}. x̄u := inf{x ∈ R : u(x) > −∞} is assumed

to be finite, i.e., x̄u > −∞. It follows that the interior of the essential domain of u is given

by the open interval dom u = (x̄u,∞). We suppose that u satisfies the Inada conditions

(U1) u′(∞) := lim
x→∞

u′(x) = 0,
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(U2) u′(x̄u) := lim
x↘x̄u

u′(x) = ∞.

Moreover, we assume that u has regular asymptotic elasticity (RAE) in the sense of Kramkov

& Schachermayer (1999), Frittelli & Gianin (2004), i.e.,

(2) lim sup
x→∞

xu′(x)

u(x)
< 1.

The last assumptions allows us to simplify the analysis considerably. We will later emphasize

where we use the notion of RAE.

By shifting the utility function along the x-axis it is no loss of generality to suppose

that x̄u = 0, and we will make this assumption in the following. The inverse of the derivative

of u will be denoted by I := (u′)−1.

We also impose some restrictions on the set Q0. We assume that the set Q0 is convex

and that all measures Q0 ∈ Q0 are equivalent to the reference measure. In addition, we

suppose that

(3) ∀ε > 0 ∃δ > 0 such that R(A) < δ =⇒ Q0(A) < ε ∀Q0 ∈ Q0.

Since the set of densities

KQ0 :=

{
dQ0

dR
: Q0 ∈ Q0

}

is bounded in L1(R), (3) is equivalent to the uniform integrability of the densities. Intuitively,

the assumption corresponds to a generalized uniform moment condition on the densities.

Namely, by the de la Vallée-Poussin criterion, (3) is equivalent to the existence of a function

g : [0,∞) → [0,∞) with limx→∞ g(x)/x = ∞ such that

sup
ψ∈KQ0

ER[g(|ψ|)] < ∞.

W.l.o.g we will also assume that KQ0 is closed in L1(R). Indeed, if KQ0 is not closed,

then its L1(R)-closure K̄Q0 defines yet another set Q̄0 of subjective measures by setting

Q(A) := ER[ψ; A]

for ψ ∈ K̄Q0 . For any claim X with u(X)− ∈ L1(Q0) for all Q0 ∈ Q0 we obtain

inf
Q0∈Q0

EQ0 [u(X)] = inf
Q0∈Q̄0

EQ0 [u(X)].

In summary, we suppose that KQ0 is L1(R)-closed and uniformly integrable. By the

Dunford-Pettis Theorem our hypothesis can therefore be rephrased in the following way:

Assumption 2.1. We assume that all measures in Q0 are equivalent to R and that the set

KQ0 is weakly compact, i.e., KQ0 is σ(L1(R), L∞(R))-compact.

4



2.2 Budget Constraint

We are interested in maximizing the terminal robust utility over all feasible financial posi-

tions. Feasibility is, of course, a term which needs to be defined in detail, and we will do so

in the following three sections. We will solve the optimization problem in two steps. Using

convex duality, we solve a portfolio optimization problem which is essentially static. We

investigate in Section 2.5 how this solution is linked to the problem of finding an optimal

self-financing trading strategy.

Definition 2.2. A self-financing portfolio with initial value x is a d-dimensional predictable,

S-integrable process (ξt)0≤t≤T which specifies the amount of each asset in the portfolio. The

corresponding value process of the portfolio is given by

(4) Vt := x +

∫ t

0

ξsdSs (0 ≤ t ≤ T ).

The family V(x) denotes all non-negative value processes of self-financing portfolios with

initial value equal to x.

Let us fix an initial wealth x2 > 0. We are interested in finding a self-financing portfolio

in V(x2) with bounded downside risk that maximizes terminal robust utility. The budget

constraint can be expressed in terms of martingale measures.

Definition 2.3. A probability measure P which is absolutely continuous with respect to

R is called an absolutely continuous martingale measure if S is a local martingale under P .

The family of these measures is denoted by P . Any P ∈ P which is equivalent to R is called

an equivalent local martingale measure. The family of these measures will be denoted by Pe.

We interpret measures in the set P as pricing measures and assume throughout that

(5) Pe 6= ∅.

The financial market which we consider will thus have the no free lunch with vanishing risk

(NFLVR) property, see Delbaen & Schachermayer (1994).

Fixing initial wealth of x2 > 0, a contingent claim X ≥ 0 is affordable if there is a

self-financing portfolio V ∈ V(x2) such that

(6) VT ≥ X R− a.s.

The optional decomposition theorem by Kramkov (1996) and Föllmer & Kabanov (1998)

states that this notion of affordability is equivalent to

(7) sup
P∈P

EP [X] ≤ x2.

We will choose (7) as the budget constraint of our robust utility maximization problem. A

simple argument in Section 2.5 will later show that the optimal claim can actually be repli-

cated. This connects the static optimization result to the dynamic optimization problem.
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2.3 The Risk Constraint

Besides the budget constraint, we will also require feasible financial positions to satisfy

a downside risk constraint. Downside risk of financial positions can be quantified by risk

measures. We let D be some vector space of random variables.

Definition 2.4. A mapping ρ : D → R is called a risk measure (on D) if it satisfies the

following conditions for all X1, X2 ∈ D:

• Inverse Monotonicity: If X1 ≤ X2, then ρ(X1) ≥ ρ(X2).

• Translation Invariance: If m ∈ R, then ρ(X + m) = ρ(X)−m.

Monotonicity refers to the property that risk decreases if the payoff profile is increased.

Translation invariance formalizes that risk is measured on a monetary scale: if a monetary

amount m ∈ R is added to a position X, then the risk of X is reduced by m.

Value at risk (VaR in the following) is a risk measure according to the above definition,

but it does in general not encourage diversification of positions – it is not a convex risk

measure, if L∞ ⊆ D. A risk measure ρ is convex (on D), if it satisfies the following conditions

for all X1, X2 ∈ D:

• Convexity: ρ(αX1 + (1− α)X2) ≤ αρ(X1) + (1− α)ρ(X2) for all α ∈ (0, 1).

In this article, we focus on a particular example of a convex risk measure for measuring

the downside risk, namely utility-based shortfall risk. Utility-based shortfall risk is most

easily defined as a capital requirement, i.e., the smallest monetary amount that has to be

added to a position to make it acceptable.1 We will now give the definition of utility-based

shortfall risk.

Let ` : R → [0,∞] be a loss function, i.e., an increasing function that is not constant.

The level x1 shall be a point in the interior of the range of `. Let Q1 be a fixed subjective

probability measure equivalent to R, which we will use for the purpose of risk management.

The space of financial positions D is chosen in such a way that for X ∈ D the integral∫
`(−X)dQ1 is well defined.

Define an acceptance set

(8) AQ1 = {X ∈ D : EQ1 [`(−X)] ≤ x1} .

A financial position is thus acceptable if the expected value of `(−X) under the subjective

probability measure Q1, i.e., the expected loss EQ1 [`(−X)], is not more than x1.

The acceptance set AQ1 induces the risk measure utility-based shortfall risk (UBSR in

the following) ρQ1 as the associated capital requirement

(9) ρQ1(X) = inf{m ∈ R : X + m ∈ AQ1}.
1Note that every static risk measure can be defined as a capital requirement. To be more precise, if ρ

is a risk measure, then A = {X ∈ D : ρ(X) ≤ 0} defines its acceptance set, i.e., the set of positions with
non-positive risk. ρ is then recovered as ρ(X) = inf{m ∈ R : X +m ∈ A}, see e.g. Föllmer & Schied (2004),
Chapter 4.
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Utility-based shortfall risk is convex and does therefore encourage diversification. Ex-

amples of loss functions ` include exponentials exp(αx), α > 0, which lead to the so-called

entropic risk measures, for which a simple explicit formula is available; see Föllmer & Schied

(2004), Example 4.105. Alternatively, one-sided loss functions can be used to measure down-

side risk only. These risk measures look at losses only and do not consider tradeoffs between

gains and losses. Examples include (x + x̄`)
α · 1(−x̄`,∞)(x), α > 1, x̄` ∈ R, or exponentials

(exp {α(x + x̄`)} − 1) · 1(−x̄`,∞)(x), α > 0, x̄` ∈ R.

Our aim is to solve the utility maximization problem under a joint budget and risk

measure constraint. If there is no model uncertainty, the shortfall risk constraint (UBSR

constraint in the following) shall be given by

(10) ρQ1(X) ≤ 0.

A financial position X which satisfies (10) is acceptable from the point of view of the risk

measure ρ. This is equivalent to

(11) EQ1 [`(−X)] ≤ x1.

In the case where the agent faces model uncertainty, we consider a second setQ1 of subjective

measures which are equivalent to the reference measure R. The robust UBSR constraint is

given by

(12) sup
Q1∈Q1

ρQ1(X) ≤ 0.

That is, any financial position must be acceptable from the point of view of all risk measures

ρQ1 (Q1 ∈ Q1). This is equivalent to

(13) sup
Q1∈Q1

EQ1 [`(−X)] ≤ x1.

As for the set Q0 we impose also convexity and weak compactness on the set Q1.

Assumption 2.5. We assume that all measures in the convex set Q1 are equivalent to the

reference measure R, and that the set of densities

(14) KQ1 :=

{
dQ1

dR
: Q1 ∈ Q1

}

is weakly compact in L1(R), i.e., that KQ1 is σ(L1(R), L∞(R))-compact.

Weak compactness, of course, means that KQ1 is weakly closed (or equivalently L1(R)-

closed) and uniformly integrable by the Dunford-Pettis. The uniform integrability can be

rephrased as a generalized moment condition by the de la Vallée-Poussin criterion.

We require the loss function ` to satisfy the following technical conditions. We assume

that ` is strictly convex, strictly increasing, and continuous. We suppose in addition that ` is

continuously differentiable on the interval2 (−x̄`,∞) for some x̄` ∈ (0,∞], and that `(x) = 0

for x ≤ −x̄`. We assume that limx→−∞ `(x) = 0 and limx→−∞ `′(x) = 0 if x̄` = ∞. As for

the utility function, we suppose that ` has regular asymptotic elasticity (RAE) if x̄` = ∞,

i.e., lim infx→−∞
x`′(x)
`(x)

< 1. The last assumption implies that the associated Bernoulli utility

function x 7→ −`(−x) has RAE for x →∞.

2If x̄` ≤ 0, the risk constraint will trivially be satisfied for all claims with utility larger than −∞.
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2.4 The Robust Problem in an Incomplete Market Model

We can now pose the robust utility maximization problem under a joint budget and downside

risk constraint which we will solve in the current paper. It can be seen as a auxiliary static

problem. Its relationship with the solution to the dynamic portfolio selection problem is

discussed in Section 2.5.

Let us denote the set of terminal financial positions with well defined utility and prices

by

(15) I =
{
X ≥ 0 : X ∈ L1(P ) for all P ∈ P and u(X)− ∈ L1(Q0) for all Q0 ∈ Q0

}
.

For x0, x1 > 0, we will solve the following optimization problem under a joint budget

and UBSR constraint:

Maximize inf
Q0∈Q0

EQ0 [u(X)] over all X ∈ I

that satisfy sup
Q1∈Q1

EQ1 [`(−X)] ≤ x1 and sup
P∈P

EP [X] ≤ x0.
(16)

The set of all financial positions in I that satisfy the two constraints is denoted by

X (x0, x1), i.e.,

(17) X (x0, x1) := {X ∈ I : sup
Q1∈Q1

EQ1 [`(−X)] ≤ x1 and sup
P∈P

EP [X] ≤ x0}.

We will first solve an auxiliary problem (20) without model uncertainty and then use

this result to tackle problem (16).

2.5 Replication

If S is locally bounded, then the solution to the static problem above is equivalent to the

following dynamic problem under a joint budget and UBSR constraint:

Maximize inf
Q0∈Q0

EQ0 [u(VT )] over all V ∈ V(x0)

that satisfy sup
Q1∈Q1

EQ1 [`(−VT )] ≤ x1.
(18)

Although the proof of the following theorem requires some results which will be proven

in later sections, we state it already at this point. This allows us to to motivate our analysis

of (16) more clearly.

Theorem 2.6. The optimization problem (16) admits a solution, if and only if the opti-

mization problem (18) admits a solution.

If X∗ ∈ X (x0, x1) is a solution to problem (16), then there exists a solution V ∗ ∈ V(x0)

to (18) with V ∗
T ≥ X∗ R-almost surely. In this case, V ∗

T = X∗ R-almost surely, if the

solution to (16) is R-almost surely unique. If, conversely, V ∗ ∈ V(x0) is a solution to (18),

then V ∗
T ∈ X (x0, x1) is a solution to (16).
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Proof. Assume first that (16) admits a solution. Let Z be a right-continuous version of

Zt = ess supP∈Pe
EP [X∗|Ft].

By Proposition 4.2 in Kramkov (1996) Z is a supermartingale for every P ∈ Pe. By Theo-

rem 2.1 in Kramkov (1996) there exists a predictable, S-integrable process ξ such that

VT = x0 +

∫ T

0

ξsdSs ≥ X∗ ≥ 0.

Under all P ∈ Pe, V is a σ-martingale which is bounded from below, thus a supermartingale.

Thus, supP∈Pe
EP [VT ] ≤ x0 which implies by Lemma 3.3 that supP∈P EP [VT ] ≤ x0. Since

VT ≥ X∗, we obtain infQ0∈Q0 EQ0 [u(VT )] ≥ infQ0∈Q0 E[u(X∗)]. We also get VT ∈ X (x0, x1)

which implies that infQ0∈Q0 EQ0 [u(VT )] = infQ0∈Q0 E[u(X∗)].

It remains to be shown that V is a solution to (18). Letting V ∗ ∈ V(x0) such that

sup
Q1∈Q1

EQ1 [`(−V ∗
T )] ≤ x1 and inf

Q0∈Q0

EQ0 [u(V ∗
T )] ≥ inf

Q0∈Q0

EQ0 [u(VT )],

similar arguments as above show that V ∗
T ∈ X (x0, x1). Thus,

inf
Q0∈Q0

EQ0 [u(V ∗
T )] ≤ inf

Q0∈Q0

EQ0 [u(X∗)] = EQ0∈Q0EQ0 [u(VT )].

This implies that V is a solution to (18). If X∗ is R-almost surely unique, then VT = X∗

R-almost surely, since VT is a solution to (16).

Conversely, if a V ∗ ∈ V(x0) is a solution to (18), then V ∗ is a σ-martingale which is

bounded from below. With similar arguments as above, it follows that supP∈P EP [V ∗
T ] ≤

x0. This implies V ∗ ∈ X (x0, x1). If there was X ∈ X (x0, x1) with infQ0∈Q0 EQ0 [u(V ∗
T )] <

infQ0∈Q0 E[u(X)], arguments as above would imply the existence of V ∈ V(x0) such that

inf
Q0∈Q0

EQ0 [u(V ∗
T )] < inf

Q0∈Q0

E[u(X)] = inf
Q0∈Q0

EQ0 [u(VT )],

contradicting the optimality of V ∗. It follows that V ∗
T is a solution to problem (16).

Remark 2.7. In both the static and the dynamic problem (16) and (18) the risk constraint

is imposed at initial time 0 and not updated later. Optimal strategies are contingent on

future information, but have to respect the risk constraint at 0. They can be interpreted as

commitment solutions.

3 Extended Martingale Measures

Our characterization of a solution to the robust utility maximization problem (16) requires

an enlarged set of martingale measures. For this purpose, consider an additional default time

ζ, defined as the second coordinate ζ(ω, s) := s on the product space Ω̄ := Ω× (0,∞]. Set

Ft := FT for t > T and let

F̄ := σ({A× (t,∞] : A ∈ Ft, t ≥ 0})
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denote the predictable σ-field on Ω̄; the predictable filtration (F̄t)t≥0 is defined in the same

manner.

An adapted process Y = (Yt)t≥0 on (Ω,F , (Ft)t≥0) will be identified with the adapted

process Ȳ = (Ȳt)t≥0 on (Ω̄, F̄ , (F̄t)t≥0) defined by Ȳt := YtI{ζ>t}, i.e.,

Ȳt(ω, s) := Yt(ω)1(t,∞](s) (t ≥ 0).

To any probability measure Q on (Ω,F) corresponds the probability measure Q̄ := Q×
δ∞ on (Ω̄, F̄). Conversely, for any probability measure Q̄ on (Ω̄, F̄) we define its projections

Qt on (Ω,Ft) by

Qt(A) := Q̄(A× (t,∞]) (A ∈ Ft).

Note that Qt is a finite measure, but not necessarily a probability measure.

In order to introduce the class P̄ of extended martingale measures, let us denote by V̄(x)

the class of value processes V̄ = (V̄t)t≥0 on (Ω̄, F̄ , (F̄t)t≥0) with V̄t = Vt1{ζ>t} for V ∈ V(x).

Definition 3.1. A probability measure P̄ on (Ω̄, F̄) will be called an extended martingale

measure if

(i) P t ¿ R on Ft (t ≥ 0),

(ii) Any V̄ ∈ V̄(1) is a supermartingale under P̄ .

We denote by P̄ the class of all extended martingale measure on (Ω̄, F̄), and by PT := {P T :

P̄ ∈ P̄} the class of projections of P̄ on (Ω,F).

Remark 3.2. (i) P ∈ PT is not necessarily a probability measure, but a measure with

P (Ω) ≤ 1.

(ii) For any martingale measure P ∈ P the corresponding measure P̄ := P ×δ∞ on (Ω̄, F̄)

belongs to P̄ . This implies that P ⊆ PT . In particular, for any financial position X

we have supP∈P EP [X] ≤ supP∈PT EP [X].

(iii) The class P̄ of extended martingale measures corresponds exactly to the class of

supermartingales which appear in the duality approach of Kramkov & Schachermayer

(1999) to the problem of maximizing expected utility in incomplete financial markets,

see Föllmer & Gundel (2006).

Lemma 3.3. For a contingent claim X ≥ 0 the following conditions are equivalent:

(i) supP∈P EP [X] ≤ x2.

(ii) supP∈Pe
EP [X] ≤ x2.

(iii) There exists a value process V ∈ V(x2) such that VT ≥ X R-almost surely.

(iv) The corresponding claim X̄ := X1{ζ>T} satisfies the constraint

sup
P̄∈P̄

EP̄ [X̄] ≤ x2.

(v) supP∈PT EP [X] ≤ x2.

Proof. See Föllmer & Gundel (2006).
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4 An Auxiliary Non-Robust Problem in a “Complete

Market”

4.1 The Non-Robust Problem in a “Complete Market” Setting

We fix a projection P := P T of an extended martingale measure P̄ ∈ P̄ , a subjective

measure Q0 ∈ Q0 for the utility evaluation, and a subjective measure Q1 ∈ Q1 for the risk

constraint. Since P ⊆ PT , our analysis includes all martingale measures, but it covers also

cases in which P is not necessarily a probability measure and has total mass less than one.

We denote the set of terminal financial positions with well defined utility by

(19) IP,Q0 =
{
X ≥ 0 : X ∈ L1(P ) and u(X)− ∈ L1(Q0)

}
.

Let x0 > 0 be an initial endowment and x1 > 0 be a risk limit. We consider an auxiliary

optimization problem under a joint budget and UBSR constraint:

Maximize EQ0 [u(X)] over all X ∈ IP,Q0

that satisfy EQ1 [`(−X)] ≤ x1 and EP [X] ≤ x0.
(20)

The set of all financial positions in IP,Q0 that satisfy the two constraints is denoted by

XP,Q1,Q0(x0, x1), i.e.,

XP,Q1,Q0(x0, x1) :={X ∈ IP,Q0 : EQ1 [`(−X)] ≤ x1 and EP [X] ≤ x0}.(21)

Recall that x̄` ∈ (0,∞].

It has been shown in Gundel & Weber (2005) that the unique solution to the constrained

maximization problem (20) can be written in the form

XP,Q1,Q0 = x∗
(

λ∗1
dQ1

dQ0

, λ∗2
dP

dQ0

)
,

where x∗ : [0,∞) × (0,∞) → (0,∞) is a continuous deterministic function, and λ∗1, λ
∗
2

are suitable real parameters. x∗ is obtained as the solution of a family of deterministic

maximization problems.

To be more specific, let us define a family of functions gy1,y2 with y1, y2 ≥ 0 by

gy1,y2(x) := u(x)− y1`(−x)− y2x.

For each pair y1 ≥ 0, y2 > 0, the maximizer of gy1,y2 is unique and equals

x∗(y1, y2) :=





J(y1, y2) if y2 > u′(x̄`) + y1`
′(−x̄`+),

x̄` if u′(x̄`) ≤ y2 ≤ u′(x̄`) + y1`
′(−x̄`+),

I(y2) if y2 < u′(x̄`).

(22)

Here, J(y1, y2) denotes the unique solution to the equation u′(x) + y1`
′(−x) = y2 for the

case that y2 > u′(x̄`) + y1`
′(−x̄`+), and I := (u′)−1. Note that x∗(0, y2) = I(y2) = J(0, y2).
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In order to characterize the solution to the utility maximization problem, we will also

need to determine a financial position YP,Q1 ≥ 0 that minimizes the expected loss under the

budget constraint:

Minimize EQ1 [`(−Y )] over all financial positions Y ≥ 0

with Y ∈ L1(P ) and EP [Y ] ≤ x0.
(23)

The solution to this problem is of the form

YP,Q1 = −L

(
cP,Q1

dP

dQ1

)
.

Here L : R → [−x̄`, 0] is defined as the generalized inverse of the derivative of the loss

function `, i.e.,

(24) L(y) :=





0 if y ≥ `′(0),

(`′)−1(y) if `′(−x̄`+) < y < `′(0),

−x̄` if y ≤ `′(−x̄`+).

L is a continuous function which is strictly increasing on [`′(−x̄`+), `′(0)]. Properties of the

functions x∗ and L are collected in Section A.

We make the following technical assumption.

Assumption 4.1. Let the function x∗ be defined as in (22). We impose the following

integrability assumptions for all λ1 ≥ 0, λ2 > 0:

(a) x∗
(
λ1

dQ1

dQ0
, λ2

dP
dQ0

)
∈ L1(P ),

(b) `
(
−x∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

))
∈ L1(Q1),

(c) u
(
x∗

(
λ1

dQ1

dQ0
, λ2

dP
dQ0

))
∈ L1(Q0).

Assumption 4.1 imposes the standard integrability conditions which guarantee that the

price, the expected loss and the utility of the solution are well defined.

Let us now state the solution to the loss minimization problem (23).

Proposition 4.2. Let x0 ∈ (0, x̄`). Then the equation

(25) x0 = −EP

[
L

(
c

dP

dQ1

)]

has a solution cP,Q1 > 0. A solution to Problem (23) is given by

(26) YP,Q1 := −L

(
cP,Q1

dP

dQ1

)
.

On the set {dP/dR > 0}, the loss minimizing contingent claim is R-almost surely unique,

i.e., YP,Q1 · 1{dP/dR>0} = Ỹ · 1{dP/dR>0} R-almost surely for any other solution Ỹ to (23).
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If Assumption 4.1(a) holds for λ1 = 0 and all λ2 > 0, then there exists a unique constant

λ̃2 > 0 that solves the equation

(27) x0 = EP

[
I

(
λ̃2

dP

dQ0

)]
.

I(λ̃2dP/dQ0) is the unique solution to the utility maximization problem without risk con-

straint.

The following theorem provides a solution to the utility maximization problem (20).

Theorem 4.3. Suppose that Assumption 4.1 holds. Let x1 > 0, x0 > x̄u, let cP,Q1 and λ̃2 be

defined as in (25) and (27), and let YP,Q1 be the solution to the loss minimization problem

(23) defined in (26). There are four cases:

(i) We have x0 < x̄` and x1 < EQ1 [` (−YP,Q1)].

Then there is no financial position which satisfies both constraints.

(ii) We have x0 < x̄` and x1 = EQ1 [` (−YP,Q1)].

If u (YP,Q1)
− ∈ L1(Q0), then

XP,Q1,Q0 := YP,Q1 · 1{ dP
dR

>0} +∞ · 1{ dP
dR

=0}

= −L

(
cP,Q1

dP

dQ1

)
· 1{ dP

dR
>0} +∞ · 1{ dP

dR
=0}

is a solution to the maximization problem (20), and both constraints are binding. Oth-

erwise the maximization problem has no solution. XP,Q1,Q0 is the unique solution if

u (XP,Q1,Q0) ∈ L1(Q0).

(iii) We have EQ1 [`(−I(λ̃2dP/dQ0))] < x1. This implies that either x0 ≥ x̄` or, if x0 < x̄`,

x1 > EQ1 [`(−YP,Q1)].

Then

XP,Q1,Q0 := I

(
λ̃2

dP

dQ0

)

is the unique solution to the maximization problem (20), and the UBSR constraint is

not binding.

(iv) We have either x0 ≥ x̄` or, if x0 < x̄`, x1 > EQ1 [`(−YP,Q1)], and in both cases

EQ1 [`(−I(λ̃2dP/dQ0))] ≥ x1.

Then a solution to the maximization problem (20) exists and both constraints are

binding. The unique solution is given by

XP,Q1,Q0 := x∗
(

λ∗1
dQ1

dQ0

, λ∗2
dP

dQ0

)

=





J
(
λ∗1

dQ1

dQ0
, λ∗2

dP
dQ0

)
on

{
λ∗2

dP
dQ0

> u′(x̄`) + λ∗1
dQ1

dQ0
`′(−x̄`+)

}
,

x̄` on
{

u′(x̄`) ≤ λ∗2
dP
dQ0

≤ u′(x̄`) + λ∗1
dQ1

dQ0
`′(−x̄`+)

}
,

I
(
λ∗2

dP
dQ0

)
on

{
λ∗2

dP
dQ0

< u′(x̄`)
}

,
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where x∗ and J are defined as in (22), and λ∗1 ≥ 0, λ∗2 > 0 satisfy

(28) x1 = EQ1 [` (−XP,Q1,Q0)]

and

(29) x0 = EP [XP,Q1,Q0 ] .

4.2 Dual Characterization

The solution of the utility maximization problem (20) can alternatively be characterized

by dual functionals. These results provide the basis for the solution of the general robust

problem in an incomplete market.

Define the convex function

v(y2, y1, y0) := sup
x>0
{y0u(x)− y1`(−x)− y2x}

for (y2, y1, y0) ∈ [0,∞)× [0,∞)× (0,∞). Then, for λ1 ≥ 0 and λ2 > 0, a convex functional

on PT ×Q1 ×Q0 is given by

vλ1,λ2(P |Q1|Q0) = ER

[
v

(
λ2

dP

dR
, λ1

dQ1

dR
,
dQ0

dR

)]

= EQ0

[
u

(
x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

))]

− λ1EQ1

[
`

(
−x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

))]
− λ2EP

[
x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

)]
.

(30)

Define the convex function

ṽ(y2, y1) := sup
x>0
{−y1`(−x)− y2x}

for (y2, y1) ∈ (0,∞)× [0,∞). Then, for c ≥ 0, a convex funtional on PT ×Q1 is given by

ṽc(P |Q1) = ER

[
ṽ

(
c
dP

dR
,
dQ1

dR

)]

= −EQ1

[
`

(
L

(
c

dP

dQ1

))]
+ cEP

[
L

(
c

dP

dQ1

)]
.

(31)

Proposition 4.4. For all λ1 ≥ 0, λ2 > 0, and c ≥ 0 the functions vλ1,λ2 and ṽc are

well-defined, and vλ1,λ2 : PT ×Q1 ×Q0 → R ∪ {∞} and ṽc : PT ×Q1 → (−∞, 0].

Proof. For any x > 0,

v

(
λ2

dP

dR
, λ1

dQ1

dR
,
dQ0

dR

)
≥ dQ

dR
u(x)− λ1

dQ1

dR
`(−x)− λ2

dP

dR
x =: Z.

14



But ER[Z] = u(x)− λ1`(−x)− λ2x ∈ R. Thus,

ER

[
v

(
λ2

dP

dR
, λ1

dQ1

dR
,
dQ0

dR

)−]
∈ R,

which implies that vλ1,λ2 is well-defined. Equality with the right hand side of (30) fol-

lows from Lemma A.1(x). The proof for ṽc is analogous using Lemma A.1(xi). Moreover,

ṽ(y2, y1) ≤ 0 for all y1 ≥ 0 and y2 > 0 and hence ṽc(P |Q1) ≤ 0.

The following assumption replaces the integrability conditions from the last section.

Assumption 4.5. We suppose that

(32) vλ1,λ2(P |Q1|Q0) < ∞ for all λ1 ≥ 0 λ2 > 0.

In order to verify Assumption 4.5, it is sufficient to consider specific pairs (λ1, λ2). This

is a consequence of the assumption of the RAE of the utility function.

Proposition 4.6. The following statement are equivalent:

(i) vλ1,λ2(P |Q1|Q0) < ∞ for all λ1 ≥ 0, λ2 > 0.

(ii) v0,1(P |Q1|Q0) < ∞.

(iii) vλ1,λ2(P |Q1|Q0) < ∞ for some λ1 ≥ 0, λ2 > 0.

Proof. (ii) ⇒ (i): There exist functions a > 0 and b ≥ 0 such that for λ2 > 0 and y2, y0 > 0

v(λ2y2, 0, y0) ≤ a(λ2)v(y2, 0, y0) + b(λ2)(y2 + 1),

see e.g. Lemma 2.1.6(iv) in Gundel (2006). Since v is decreasing in y1, (i) follows from (ii).

(iii) ⇒ (i): Assume that vλ̃1,λ̃2
(P |Q1|Q0) < ∞. Then

v(λ2y2, λ1y1, y0) ≤ v(λ2y2, 0, y0)

≤ a

(
λ2

λ̃2

)
v

(
λ̃2y2, 0, y0

)
+ b

(
λ2

λ̃2

)
(λ̃2y2 + 1)

≤ a

(
λ2

λ̃2

)
(v(λ̃2y2, λ̃1y1, y0) + λ̃1y1`(0)) + b

(
λ2

λ̃2

)
(λ̃2y2 + 1)

for λ1 ≥ 0 and λ2 > 0. Thus, (i) follows from (iii).

Assumption 4.5 is equivalent to the integrability assumptions that were needed for the

solution of the primal utility maximization problem (20) without model uncertainty, i.e.,

Assumption 4.1.

Lemma 4.7. Assumptions 4.1 and 4.5 are equivalent.

15



Proof. By Lemma A.1(x) v is continuously differentiable in y1 ≥ 0 and y2 > 0. We will first

show that Assumption 4.5 implies Assumption 4.1.

• Assumption 4.5 ⇒ Assumption 4.1:

(a) In order to simplify the notation, we define the convex function

f(y2) := v(y2, y1, y0).

Letting λ1 ≥ 0 be fixed, we set y0 := dQ0/dR > 0, y1 := λ1dQ1/dR ≥ 0, φ := dP/dR,

y2 := λ2φ for λ2 > 0. Since f is convex, we obtain for 0 < µ < ν and φ > 0

f(νφ)− f((ν − µ)φ) ≤ µφf ′(νφ) ≤ f((ν + µ)φ)− f(νφ).

For φ = 0 we have to argue more carefully. If f(0) < ∞, the above inequality is trivially

satisfied. If f(0) = ∞ and R[φ = 0] > 0, then ER[f(φ)] = ∞, contradicting Assumption 4.5.

In summary, we obtain that

ER [f (νφ)]− ER [f ((ν − µ)φ)] ≤ µEP [f ′ (νφ)]

≤ ER [f ((ν + µ)φ)]− ER [f (νφ)] .

By Lemma A.1(x), f ′(y2) = −x∗ (y1/y0, y2/y0). Multiplying all parts by −1 thus leads to

vλ1,ν(P |Q1|Q0)− vλ1,ν+µ(P |Q1|Q0) ≤ µEP

[
x∗

(
λ1

dQ1

dQ0

, ν
dP

dQ0

)]

≤ vλ1,ν−µ(P |Q1|Q0)− vλ1,ν(P |Q1|Q0).

Both the upper and the lower bound are finite due to Proposition 4.4 and Assumption 4.5.

This implies Assumption 4.1(a).

(b) follows analogously with ∂v(y2, y1, y0)/∂y1 = −` (−x∗ (y1/y0, y2/y0)).

(c) Finally, we obtain from Lemma A.1(x)

dQ0

dR
u

(
x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

))
= v

(
λ2

dP

dR
, λ1

dQ1

dR
,
dQ0

dR

)

+ λ1
dQ1

dR
`

(
−x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

))
+ λ2

dP

dR
x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

)
.

(33)

Since we just showed that the right-hand side is in L1(R), 4.5(c) is also proven.

• Assumption 4.1 ⇒ Assumption 4.5: This direction is immediate from (33).

The following theorem gives an alternative solution of the robust utility maximization

problem in the absence of model uncertainty using the dual functionals vλ1,λ2 and ṽc.

Theorem 4.8. Suppose that Assumption 4.5 holds.

(i) Let YP,Q1 be the solution to the the loss minimization problem (23) defined in Propo-

sition 4.2. Assume that either x0 ≥ x̄` or, if x0 < x̄`, x1 > EQ1 [` (−YP,Q1)]. The

following conditions are equivalent:
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(a) x1 = EQ1

[
`
(
−x∗

(
λ∗1

dQ1

dQ0
, λ∗2

dP
dQ0

))]
, x0 = EP

[
x∗

(
λ∗1

dQ1

dQ0
, λ∗2

dP
dQ0

)]
and λ∗1 > 0

(b) (λ∗1, λ
∗
2) = argminλ1≥0,λ2>0 (vλ1,λ2(P |Q1|Q0) + λ1x1 + λ2x0) and λ∗1 > 0

For the case λ∗1 = 0 the following conditions are equivalent:

(c) x1 ≥ EQ1

[
`
(
−x∗

(
0, λ∗2

dP
dQ0

))]
, x0 = EP

[
x∗

(
0, λ∗2

dP
dQ0

)]

(d) (0, λ∗2) = argminλ1≥0,λ2>0 (vλ1,λ2(P |Q1|Q0) + λ1x1 + λ2x0)

If any of these conditions is satisfied, XP,Q1,Q0 = x∗
(
λ∗1

dQ1

dQ0
, λ∗2

dP
dQ0

)
is a solution to

the utility maximization problem (20) and

(34) EQ0 [u(XP,Q1,Q0)] = vλ∗1,λ∗2(P |Q1|Q0) + λ∗1x1 + λ∗2x0.

(ii) Let x0 ∈ (0, x̄`). The following conditions are equivalent:

(a) x0 = EP

[
−L

(
cP,Q1

dP
dQ1

)]

(b) cP,Q1 = argminc>0 (ṽc(P |Q1) + cx0)

In this case, YP,Q1 = −L
(
cP,Q1

dP
dQ1

)
is a solution to the the loss minimization problem

(23) defined in Proposition 4.2 and EQ1 [−` (−YP,Q1)] = ṽcP,Q1
(P |Q1) + cP,Q1x0.

The proof of the last theorem is based on the following lemma.

Lemma 4.9. Let Assumption 4.5 hold. Then vλ1,λ2(P |Q1|Q0) is continuously differentiable

in λ1 ≥ 0 and λ2 > 0 with

∂

∂λ1

vλ1,λ2(P |Q1|Q0) = −EQ1

[
`

(
−x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

))]
(35)

and

∂

∂λ2

vλ1,λ2(P |Q1|Q0) = −EP

[
x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

)]
.(36)

Furthermore, ṽc(P |Q1) is continuously differentiable in c > 0 with

∂

∂c
ṽc(P |Q1) = EP

[
L

(
c

dP

dQ1

)]
.(37)

Proof. By Lemma A.1(x)&(xi) v and ṽ are continuously differentiable with

∂v

∂y1

(y2, y1, y0) = −`

(
−x∗

(
y1

y0

,
y2

y0

))
,

∂v

∂y2

(y2, y1, y0) = −x∗
(

y1

y0

,
y2

y0

)
,

∂ṽ

∂y2

(y2, y1) = L

(
y2

y1

)
.

By Lemma 4.7,

x∗
(

λ1
dQ1

dQ0

, λ2
dP

dQ0

)
∈ L1(P ), `

(
−x∗

(
λ1

dQ1

dQ0

, λ2
dP

dQ0

))
∈ L1(Q1), L

(
c

dP

dQ1

)
∈ L1(P )

for any λ1 ≥ 0, λ2 > 0, and c > 0. Furthermore, x∗ is decreasing in y2, `◦(−x∗) is decreasing

in y1, and L is increasing. Thus, the continuity of the right hand sides of (35), (36), and (37)
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follows from the dominated convergence theorem. Moreover we may use Fubini’s theorem

to obtain for 0 < λ1
2 < λ2

2

vλ1,λ2
2
(P |Q1|Q0) = vλ1,λ1

2
(P |Q1|Q0)− ER

[∫ λ2
2

λ1
2

x∗
(

λ1
dQ1

dQ0

, ν
dP

dQ0

)
dP

dR
dν

]

= vλ1,λ1
2
(P |Q1|Q0)−

∫ λ2
2

λ1
2

EP

[
x∗

(
λ1

dQ1

dQ0

, ν
dP

dQ0

)]
dν,

and for 0 ≤ λ1
1 < λ2

1

vλ2
1,λ2

(P |Q1|Q0) = vλ1
1,λ2

(P |Q1|Q0)− ER

[∫ λ2
1

λ1
1

`

(
−x∗

(
ν
dQ1

dQ0

, λ2
dP

dQ0

))
dQ1

dR
dν

]

= vλ1
1,λ2

(P |Q1|Q0)−
∫ λ2

1

λ1
1

EQ1

[
`

(
−x∗

(
ν
dQ1

dQ0

, λ2
dP

dQ0

))]
dν,

and for 0 < c1 < c2

ṽc2(P |Q1) = ṽc1(P |Q1) + ER

[∫ c2

c1
L

(
ν

dP

dQ1

)
dP

dR
dν

]

= ṽc1(P |Q1) +

∫ c2

c1
EP

[
L

(
ν

dP

dQ1

)]
dν.

This completes the proof.

Proof of Theorem 4.8. (i) Note that (λ1, λ2) 7→ vλ1,λ2(P |Q1|Q2) + λ1x1 + λ2x0 =: g(λ1, λ2)

is convex and continuously differentiable.

(a) ⇒ (b): By Lemma 4.9, ∂g
∂λ1

(λ∗1, λ
∗
2) = 0 and ∂g

∂λ2
g(λ∗1, λ

∗
2) = 0. Thus, (λ∗1, λ

∗
2) is a global

minimum of g.

(b) ⇒ (a): Since λ∗1 > 0, we have

0 =
∂g

∂λ1

(λ∗1, λ
∗
2) = −EQ1

[
`

(
−x∗

(
λ∗1

dQ1

dQ0

, λ∗2
dP

dQ0

))]
+ x1.

Moreover, ∂g
∂λ2

(λ∗1, 0) = −∞ by Lemma A.1(vi), thus λ∗2 > 0 and

0 =
∂g

∂λ2

(λ∗1, λ
∗
2) = −EP

[
x∗

(
λ∗1

dQ1

dQ0

, λ∗2
dP

dQ0

)]
+ x0.

(c) ⇒ (d): By Lemma 4.9, ∂g
∂λ1

(0, λ∗2) ≥ 0 and ∂g
∂λ2

g(0, λ∗2) = 0. Thus, (0, λ∗2) is a global

minimum of g.

(d) ⇒ (c): We have

0 ≤ ∂g

∂λ1

(λ∗1, λ
∗
2) = −EQ1

[
`

(
−x∗

(
λ∗1

dQ1

dQ0

, λ∗2
dP

dQ0

))]
+ x1.

The second claim follows as in the part “(b) ⇒ (a).”
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It remains to prove (34). By Theorem 4.3, XP,Q1,Q0 is a solution to the maximization problem

(20) and

EQ0 [u(XP,Q1,Q0)] = EQ0

[
u

(
x∗

(
λ∗1

dQ1

dQ0

, λ∗2
dP

dQ0

))]

−λ∗1EQ1

[
`

(
−x∗

(
λ∗1

dQ1

dQ0

, λ∗2
dP

dQ0

))]
− λ∗2EP

[
x∗

(
λ∗1

dQ1

dQ0

, λ∗2
dP

dQ0

)]
(38)

= vλ∗1,λ∗2(P |Q1|Q0).

The first equality follows, since the last two terms in (38) are 0. The last equality follows

from (30).

(ii) Note that c 7→ ṽc(P, Q1) + cx0 =: k(c) is convex and continuously differentiable.

(a) ⇒ (b): By Lemma 4.9, ∂k
∂c

(cP,Q1) = 0. Thus, cP,Q1 is a global minimum.

(b) ⇒ (a): ∂k
∂c

(0) = EP [L(0)] = −x̄` < 0 by Lemma A.1(viii). Thus, cP,Q1 > 0 and

0 =
∂k

∂c
(cP,Q1) = EP

[
L

(
cP,Q1

dP

dQ1

)]
+ x0.

5 The Robust Problem in an Incomplete Market

In this section we finally solve the robust utility maximization problem (16) under a joint

budget and risk constraint. In order to keep the presentation clear, we postpone all proofs to

Section 6. The relationship of the solution to (16) with the dynamic portfolio optimization

problem (18) was already investigated in Section 2.5.

It turns out that the robust solution can be constructed from the non robust solution

with the help of certain worst-case measures. In the robust case, we replace Assumption

(4.5) by the following robust version:

Assumption 5.1.

(39) inf
P∈PT

inf
Q1∈Q1

inf
Q0∈Q0

vλ1,λ2(P |Q1|Q0) < ∞ for all λ1 ≥ 0, λ2 > 0.

In order to verify Assumption 5.1, it is again sufficient to consider specific pairs (λ1, λ2).

This is a consequence of the assumption of RAE of the utility function.

Proposition 5.2. Assumption 5.1 is equivalent to

inf
P∈PT

inf
Q1∈Q1

inf
Q0∈Q0

v0,1(P |Q1|Q0) < ∞.

Proof. The proposition follows from Proposition 4.6.
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5.1 Loss Minimization

As in the non-robust case, a first step consists in solving the problem of minimizing the

expected loss over all contingent claims Y ≥ 0 under the budget constraint in an incomplete

market, i.e.,

Minimize sup
Q1∈Q1

EQ1 [`(−Y )] over all Y ≥ 0

with Y ∈ L1(P ) for all P ∈ PT and sup
P∈PT

EP [Y ] ≤ x0.
(40)

Proposition 5.3. Let Assumption 5.1 hold and let x0 ∈ (0, x̄`).

(i) There exists c∗ ∈ (0,∞) that minimizes the convex function

G̃(c) = inf
P∈PT

inf
Q1∈Q1

ṽc(P |Q1) + cx0.

(ii) There exist P̃ ∈ PT and Q̃1 ∈ Q1 that achieve the infimum of ṽc∗(P |Q1) over the sets

PT and Q1.

(iii) The solution to Problem (40) is R-almost surely unique on the set {dP̃/dR > 0} and

given by

Y ∗ = −L

(
c∗

dP̃

dQ̃1

)
.

Furthermore, Problem (40) is equivalent to the classical problem (23) under the mea-

sures P̃ and Q̃1, supP∈PT EP [Y ∗] = EP̃ [Y ∗], and

(41) − sup
Q1∈Q1

EQ1 [`(−Y ∗)] = −EQ̃1
[`(−Y ∗)] = ṽc∗(P̃ |Q̃1) + c∗x0.

5.2 Utility Maximization

We will now solve the robust utility maximization problem (16) under a joint budget and

risk constraint.

Assumption 5.4. There exists a minimizer (λ∗1, λ
∗
2) ∈ [0,∞)×(0,∞) of the convex function

inf
P∈PT

inf
Q1∈Q1

inf
Q0∈Q0

{vλ1,λ2(P |Q1|Q0) + λ1x1 + λ2x0} .

Proposition 5.5. Suppose that Assumption 5.4 holds and that the sets Q0 and Q1 satisfy

Assumptions 2.1 & 2.5. The convex functional

(P, Q1, Q0) 7→ vλ∗1,λ∗2(P |Q1|Q0)

attains its infimum on PT × Q1 × Q0. We denote the minimizing measures by P ∗ ∈ PT ,

Q∗
1 ∈ Q1, and Q∗

0 ∈ Q0.

We impose the following additional hypothesis:
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Assumption 5.6. For any Q0 ∈ Q0, there exists α ∈ (0, 1] such that

vλ∗1,λ∗2(P
∗|Q∗

1|αQ0 + (1− α)Q∗
0) < ∞.

Lemma 5.7. If u(∞) < ∞, then Assumption 5.6 is automatically satisfied.

The minimizers P ∗, Q∗
1, and Q∗

0 in Proposition 5.5 can be characterized as worst case

measures.

Proposition 5.8. Suppose that Assumptions 5.1, 5.4 & 5.6 hold, and define

X∗ := x∗
(

λ∗1
dQ∗

1

dQ∗
0

, λ∗2
dP ∗

dQ∗
0

)
.

Then

(i) X∗ ∈ L1(P ) for all P ∈ PT , and

EP ∗ [X∗] = sup
P∈PT

EP [X∗] ,(42)

(ii) ` (−X∗) ∈ L1(Q1) for all Q1 ∈ Q1, and

EQ∗1 [` (−X∗)] = sup
Q1∈Q1

EQ1 [` (−X∗)] ,(43)

(iii) u (X∗) ∈ L1(Q0) for all Q0 ∈ Q0, and

(44) EQ∗0 [u (X∗)] = inf
Q0∈Q0

EQ0 [u (X∗)] .

Finally, we state the solution to the robust utility maximization problem (16) under

both a budget and a risk constraint. Recall that v0,λ2(P |Q1|Q0) does not depend on Q1.

Uniqueness in the following is meant in the R-almost sure sense.

Theorem 5.9. Let the sets Q0 and Q1 satisfy the Assumptions 2.1 & 2.5, let the integrability

assumptions 5.1 and 5.6 hold, and let x1, x0 > 0. Define Y ∗ as the loss-minimizing claim

from Proposition 5.3. Furthermore, let λ̃2 be a minimizer of the convex function

inf
P∈PT

inf
Q0∈Q0

v0,λ2(P |Q1|Q0) + λ2x0,

and P̂ and Q̂0 minimizer of v0,λ̃2
(P |Q1|Q0) over PT and Q0.

(i) If x0 < x̄` and x1 < supQ1∈Q1
EQ1 [` (−Y ∗)], then there is no contingent claim which

satisfies both constraints.

(ii) Assume that x0 < x̄` and x1 = supQ1∈Q1
EQ1 [` (−Y ∗)].

If u (Y ∗)− ∈ L1(Q0) for all Q0 ∈ Q0, then

X∗ : = Y ∗ · 1n dP̃
dR

>0
o +∞ · 1n dP̃

dR
=0
o

is a solution to the maximization problem (16), and both constraints are binding. Oth-

erwise the maximization problem has no solution. X∗ is the unique solution on the set

{dP̃/dR > 0}.
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(iii) Assume that supQ1∈Q1
EQ1 [`(−I(λ̃2dP̂ /dQ̂0))] < x1. Then

X∗ := I

(
λ̃2

dP̂

dQ̂0

)

is the unique solution to the maximization problem (16), and the UBSR constraint is

not binding.

(iv) Assume that x1 ≥ supQ1∈Q1
EQ1 [` (−Y ∗)] and supQ1∈Q1

EQ1 [`(−I(λ̃2dP̂ /dQ̂0))] ≥ x1.

Then a solution to the maximization problem (16) exists and both constraints are

binding.

Assume in addition that Assumption 5.4 holds. Then the unique solution is given by

X∗ := x∗
(

λ∗1
dQ∗

1

dQ∗
0

, λ∗2
dP ∗

dQ∗
0

)
,

where x∗ is defined as in (22). Furthermore, P ∗, Q∗
1, and Q∗

0 are worst case measures,

i.e., they satisfy (42), (43), and (44), and the utility of the optimal claim is given by

(45) inf
Q0∈Q0

EQ0 [u(X∗)] = vλ∗1,λ∗2(P
∗|Q∗

1|Q∗
0) + λ∗1x1 + λ∗2x0.

The preceding theorem provides a solution to the robust utility maximization problem

(16) under both a budget and a risk constraint. The solution is of the same form as the

solution to Problem (20) without model uncertainty.

Note that in case (ii), the robust problem (16) has the same solution as the classical

problem (20) under Q̃1 and P̃ , and these two measures may be interpreted as worst case

measures for the utility maximization problem. In case (iii), the robust problem (16) can

be reduced to a utility maximization problem with utility functional EQ̂0
[u(X)] and budget

constraint EP̂ [X]. The risk constraint is automatically satisfied in this case, and P̂ and Q̂0

are worst case measures for the optimal claim. In the last case (iv), X∗ is the solution to

the utility maximization problem (20) with a joint budget and risk constraint under the

measures Q∗
0, Q∗

1, and P ∗.

6 Proofs

6.1 Loss Minimization

Proof of Proposition 5.3. (i) The function G̃(c) := infP∈PT infQ1∈Q1 ṽc(P |Q1)+cx0 is convex.

Lemma A.1 implies that limc→∞ ṽ(c, 1)/c = 0. Observe that for x > 0 we have

ṽ

(
c
dP

dR
,
dQ1

dR

)
≥ −dQ1

dR
`(−x)− c

dP

dR
x.

We obtain ṽc(P |Q1) ≥ ṽ(c, 1) by taking expectations with respect to the reference measure

R and then the supremum over x > 0. Thus,

lim
c→∞

G̃(c) ≥ lim
c→∞

(ṽ(c, 1) + cx0) = lim
c→∞

c

(
ṽ(c, 1)

c
+ x0

)
= ∞
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because x0 > 0.

Assume now that the infimum is achieved in c∗ = 0. Observe that

G̃(c) ≥ ṽ(c, 1) + cx0.

With c → 0 we obtain by Lemma A.1(xi) that G̃(0) ≥ 0. Thus, for any c > 0,

0 ≤ G̃(0) ≤ inf
P∈PT

inf
Q1∈Q1

ṽc(P |Q1) + cx0 ≤ ṽc(P |Q1) + cx0 ≤ c

(
EP

[
L

(
c

dP

dQ1

)]
+ x0

)

for any Q1 ∈ Q and P ∈ PT . Noting that ṽc(P |Q1)+cx0 is zero for c = 0, the last inequality

follows from the convexity of c 7→ ṽc(P |Q1) + cx0 and Lemma 4.9.

L
(
c dP

dQ1

)
converges to −x̄` as c → 0 and is bounded. Since x̄` > x0, the bounded

convergence theorem implies that there exists c > 0 such that the last term in the brackets

is strictly negative, a contradiction. Hence, the convex function G̃ achieves its infimum in

some c∗ ∈ (0,∞).

(ii) For the properties of the function ṽ the reader is referred to Lemma A.1. Let f(x) =

ṽ(c∗x, 1). f is continuous, convex and

lim
x→∞

f(x)

x
= lim

x→∞
ṽ(c∗x, 1)

x
= 0.

Moreover,

ṽ(c∗x, y) =

{
0 if y = 0,

yf
(

x
y

)
if y > 0.

Since Q1 is weakly compact by Assumption 2.1, we can apply Theorem 1.2.8 of Gundel

(2006).

(iii) supQ1∈Q1
EQ1(`(−Y ∗)) = EQ̃1

(`(−Y ∗)) and supP∈PT EP (Y ∗) = EP̃ (Y ∗) follow from

Proposition 2.3.8 in Gundel (2006). Here, −`(−·) replaces the Bernoulli utility function.

Gundel’s Assumption 2.3.2 is automatically satisfied, since ṽc(P |Q1) ≤ 0 for all c ≥ 0.

By Theorem 4.8(ii), Y ∗ is a solution to the classical loss minimization problem (23)

under P̃ and Q̃1, and x0 = EP̃ (Y ∗). Thus, Y ∗ satisfies also the robust budget constraint in

(40). Then,

− sup
Q1∈Q1

EQ1(`(−Y )) ≤ −EQ̃1
(`(−Y )) ≤ −EQ̃1

(`(−Y ∗)) = − sup
Q1∈Q1

EQ1(`(−Y ∗)).

This implies that Y ∗ is a solution to (40). Moreover, by Theorem 4.8(ii),

−EQ̃1
(`(−Y ∗)) = ṽc∗(P̃ |Q̃1) + c∗x0.

In order to show uniqueness, assume that Ỹ solves Problem (40). Then we have EP̃ [Ỹ ] ≤
x0 and hence

sup
Q1∈Q1

EQ1 [`(−Ỹ )] ≥ EQ̃1
[`(−Ỹ )] ≥ EQ̃1

[`(−Y ∗)].

The second inequality holds strictly unless Ỹ = Y ∗ R-almost surely on {dP̃ /dR > 0}.
This follows from the fact that Y ∗ is the solution to Problem (23) under P̃ and Q̃1 and

from the uniqueness result in Proposition 4.2. But the strict inequality is a contradiction

to EQ̃1
[`(−Y ∗)] = supQ1∈Q1

EQ1 [`(−Y ∗)] = supQ1∈Q1
EQ1 [`(−Ỹ )]. Thus Ỹ = Y ∗ R-almost

surely on {dP̃ /dR > 0}.
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6.2 Utility Maximization

For the proof of Proposition 5.5, we need the following auxiliary result. In order to simplify

the notations, we define f (φ, ψ1, ψ0) := v (λ∗2φ, λ∗1ψ1, ψ0) and f(P |Q1|Q0) := vλ∗1,λ∗2(P |Q1|Q0).

Lemma 6.1. The set
{

f

(
dP

dR
+ ε,

dQ1

dR
,
dQ0

dR

)−
: P ∈ PT , Q1 ∈ Q1, Q0 ∈ Q0

}

is uniformly integrable with respect to R.

Proof. We obtain from the proof of Theorem 4.5 in Föllmer & Gundel (2006) that
{[

sup
x>0

(
dQ0

dR
u(x)− λ2x

(
dP

dR
+ ε

))]−
: P ∈ PT , Q0 ∈ Q0

}

is uniformly integrable. supx>0

(
dQ0

dR
u(x)− λ2x

(
dP
dR

+ ε
))

takes the role of the term “f(ψ0 +

ε, ψ0)” in the proof in Föllmer & Gundel (2006). The details are left to the reader. Now the

result follows from

f

(
dP

dR
+ ε,

dQ1

dR
,
dQ0

dR

)
= sup

x>0

{
dQ0

dR
u(x)− λ1`(−x)

dQ1

dR
− λ2x

(
dP

dR
+ ε

)}

≥ sup
x>0

{
dQ0

dR
u(x)− λ2x

(
dP

dR
+ ε

)}
− λ1`(0)

dQ1

dR
,

the uniform integrability of KQ1 due to Assumption 2.5, and the fact that the sum of two

uniformly integrable sets is again uniformly integrable.

Proof of Proposition 5.5. W.l.o.g assume that infP∈P infQ1∈Q1 infQ0∈Q0 f(P |Q1|Q0) < ∞;

otherwise, any (P,Q1, Q0) ∈ P × Q1 × Q0 is a minimizer of the generalized divergence.

f(φ, ψ1, ψ0) is continuous on [0,∞)× [0,∞)× (0,∞), since the functions g and x∗ defined

in Lemma A.1 are continuous and f(φ, ψ1, ψ0) = ψ0g(x∗(λ1ψ1/ψ0, λ2φ/ψ0)).

Let (Qn
0 )n≥1 ⊆ Q0, (Qn

1 )n≥1 ⊆ Q1, and (Pn)n≥1 ⊆ PT be such that f(P n|Qn
1 |Qn

0 )

converges to the infimum of the values f(P |Q1|Q0) over P ∈ PT , Q1 ∈ Q1 and Q0 ∈ Q0,

and define

ψn
i :=

dQn
i

dR
for i = 0, 1. By Delbaen & Schachermayer (1994), Lemma A1.1, we can choose

ψn,0
i ∈ conv(ψn

i , ψn+1
i , ...) (n = 1, 2, ...)

and functions ψ∗i such that

ψn,0
i −→ ψ∗i R− almost surely.

Since the sets KQi
are weakly compact we have ψ∗i ∈ KQi

, i.e., ψ∗i are the densities of some

measures Q∗
i ∈ Qi. Due to Lemma 4.4 in Föllmer & Gundel (2006), we can also choose

P n,0 ∈ conv(P n, P n+1, ...) (n = 1, 2, ...)
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and P ∗ ∈ PT such that

(46)
dP n,0

dR
−→ dP ∗

dR
R− almost surely.

Define φn,0 := dP n,0/dR and φ∗ := dP ∗/dR. Note first that

f(P ∗|Q∗
1|Q∗

0) = ER [f (φ∗, ψ∗1, ψ
∗
0)] = ER

[
lim
ε→0

f (φ∗ + ε, ψ∗1, ψ
∗
0)

]
= lim

ε→0
ER [f (φ∗ + ε, ψ∗1, ψ

∗
0)]

by monotone convergence, since f(·, ψ1, ψ0) is continuous and decreasing on [0,∞), and

ER [f (φ∗ + ε, ψ∗1, ψ
∗
0)] ≥ f(ER[φ∗] + ε, 1, 1) > −∞

by definition of f as a supremum. Lemma 6.1 implies

ER [f (φ∗ + ε, ψ∗1, ψ
∗
0)] = ER

[
lim

n→∞
f(φn,0 + ε, ψn,0

1 , ψn,0
0 )

]

= ER

[
lim

n→∞
f+(φn,0 + ε, ψn,0

1 , ψn,0
0 )

]
− ER

[
lim

n→∞
f−(φn,0 + ε, ψn,0

1 , ψn,0
0 )

]

≤ lim inf
n→∞

ER[f(φn,0 + ε, ψn,0
1 , ψn,0

0 )] ≤ lim inf
n→∞

ER[f(φn,0, ψn,0
1 , ψn,0

0 )]

≤ lim inf
n→∞

ER[f(φn, ψn
1 , ψn

0 )] = inf
P∈PT

inf
Q1∈Q1

inf
Q0∈Q0

f(P |Q1|Q0).

The first equality follows from the continuity of f(· + ε, ·, ·) on [0,∞)2 × (0,∞), the first

inequality follows from Fatou’s lemma (applied to the first term) and Lebesgue’s theorem

(applied to the second term) due to Lemma 6.1, and the last one from the convexity of

f(·, ·, ·). This shows that f(·| · |·) attains its minimum in (P ∗, Q∗
1, Q

∗
0).

Proof of Lemma 5.7. Let Q0 ∈ Q0, α ∈ (0, 1), and define ψ∗0 := dQ∗
0/dR, ψ0 := dQ0/dR,

ψα
0 := αψ0 + (1 − α)ψ∗0, ψ∗1 := dQ∗

1/dR, and φ∗ := dP ∗/dR. The convex function f(ψ0) :=

v(λ∗2φ
∗, λ∗1ψ

∗
1, ψ0) has increasing derivative f ′(ψ0) = u(x∗(λ∗1ψ

∗
1/ψ0, λ

∗
2φ
∗/ψ0)) ≤ u(∞) due

to Lemma A.1(vii)&(x). Hence

f(ψα
0 ) ≤ f(ψ∗0)− f ′(ψα

0 )(ψ∗0 − ψα
0 )

≤ f(ψ∗0)− f ′((1− α)ψ∗0)ψ
∗
0 + u(∞)ψα

0

= f(ψ∗0)− u

(
x∗

(
λ∗1

1− α

ψ∗1
ψ∗0

,
λ∗2

1− α

φ∗

ψ∗0

))
ψ∗0 + u(∞)ψα

0 ,

which is in L1(R) due to Assumption 5.1 and Lemma 4.7(i).

Proof of Proposition 5.8. This can be shown in exactly the same way as Proposition 3.12

in Föllmer & Gundel (2006) or Proposition 2.3.8 in Gundel (2006) by setting

(i) f(φ) := v(λ∗2φ, λ∗1dQ∗
1/dR, dQ∗

0/dR) for P ∈ PT and φ := dP/dR,

(ii) f(ψ1) := v(λ∗2dP ∗/dR, λ∗1ψ1, dQ∗
0/dR) for Q1 ∈ Q1 and ψ1 := dQ1/dR,

(iii) f(ψ0) := v(λ∗2dP ∗/dR, λ∗1dQ∗
1/dR, ψ0) for Q0 ∈ Q0 and ψ0 := dQ0/dR,

and using Lemma A.1(x).
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Note that in (i) for any P ∈ PT there is α ∈ (0, 1] such that vλ∗1,λ∗2(αP + (1 −
α)P ∗|Q∗

1|Q∗
0) < ∞. Indeed, let P ∈ PT , α ∈ (0, 1), and define φ∗ := dP ∗/dR, φ := dP/dR,

φα := αφ + (1 − α)φ∗, ψ∗1 := dQ∗
1/dR, and ψ∗0 := dQ∗

0/dR. The convex function f(φ) :=

v(λ∗2φ, λ∗1ψ
∗
1, ψ

∗
0) has increasing derivative f ′(φ) = −λ∗2x

∗(λ∗1ψ
∗
1/ψ

∗
0, λ

∗
2φ/ψ∗0) ≤ 0 on {φ > 0}.

Hence we obtain on {φα > 0},

f(φα) ≤ f(φ∗)− f ′(φα)(φ∗ − φα)

≤ f(φ∗)− λ∗2f
′((1− α)φ∗)φ∗

= f(φ∗) + λ∗2x
∗
(

λ∗1
ψ∗1
ψ∗0

, (1− α)λ∗2
φ∗

ψ∗0

)
φ∗,

which is in L1(R) due to Assumption 5.1 and Lemma 4.7(i). If f(0) = u(∞)−λ∗1`(−∞) = ∞,

then R(φα > 0) = 1 since ER[f(φ∗)] < ∞. Otherwise vλ∗1,λ∗2(αP + (1 − α)P ∗|Q∗
1|Q∗

0) =

ER[f(φα); φα > 0] + (u(∞) − λ∗1`(−∞)) · R(φα = 0), and the second term is bounded for

any P ∈ PT .

Similarly, note for the proof of (ii) that the set Q1 satisfies an assumption like As-

sumption 2.3.2 in Gundel (2006). That is, for any Q1 ∈ Q1 and α ∈ (0, 1) we have

vλ∗1,λ∗2(P
∗|αQ∗

1 + (1 − α)Q1|Q∗
0) < ∞. Indeed, let Q1 ∈ Q1 and define ψ1 := dQ1/dR and

ψα
1 := αψ1 + (1− α)ψ∗1. For the convex function f(ψ1) := v(λ∗2φ

∗, λ∗1ψ1, ψ
∗
0) with increasing

derivative f ′(ψ1) = −λ∗1`(−x∗(λ∗1ψ1/ψ
∗
0, λ

∗
2φ
∗/ψ∗0)) ≤ 0, we obtain

f(ψα
1 ) ≤ f(ψ∗1)− f ′(ψα

1 )(ψ∗1 − ψα
1 )

≤ f(ψ∗1) + λ∗1`
(
−x∗

(
(1− α)λ∗1

ψ∗1
ψ∗0

, λ∗2
φ∗

ψ∗0

))
ψ∗1,

which is in L1(R) due to Assumption 5.1 and Lemma 4.7(i).

Proof of Theorem 5.9. (i) follows from Proposition 5.3.

(ii) X∗ solves the loss minimization problem (40) by Proposition 5.3. Hence it satisfies

both constraints, and by Proposition 5.3, any other contingent claim satisfying both con-

straints equals X∗ on the set {dP̃/dR > 0}. On {dP̃/dR = 0} we cannot do any better

than setting X∗ equal to ∞. Hence, X∗ solves the utility maximization problem (16), and

it is the unique solution on the set {dP̃ /dR > 0}.
In order to show (iii) and (iv), take a contingent claim X ∈ X (x0, x1) that satisfies

the constraints, and λ1 ≥ 0, λ2 > 0. Letting P ′ ∈ PT , Q′
1 ∈ Q1, and Q′

0 ∈ Q0 with
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v1,1(P
′|Q′

1|Q′
0) < ∞, we obtain

inf
Q0∈Q0

EQ0 [u(X)] ≤ EQ′0 [u(X)]

≤ vλ1,λ2(P
′|Q′

1|Q′
0) + λ1x1 + λ2x0

= EQ′0

[
u

(
x∗

(
λ1

dQ′
1

dQ′
0

, λ2
dP ′

dQ′
0

))]

+ λ1

(
x1 − EQ′1

[
`

(
−x∗

(
λ1

dQ′
1

dQ′
0

, λ2
dP ′

dQ′
0

))])

+ λ2

(
x0 − EP ′

[
x∗

(
λ1

dQ′
1

dQ′
0

, λ2
dP ′

dQ′
0

)])
.

(47)

(iii) Let P ′ = P̂ and Q′
0 = Q̂0 in (47). If supQ1∈Q1

EQ1 [`(−I(λ̃2dP̂ /dQ̂0))] < x1, then

the last two summands in (47) are equal to zero for λ1 = 0, λ2 = λ̃2. Since x∗(0, y2) = I(y2),

this implies

sup
X∈X (x0,x1)

inf
Q0∈Q0

EQ0 [u(X)] ≤ EQ̂0

[
u

(
I

(
λ̃2

dP̂

dQ̂0

))]
.

By Proposition 2.3.8 in Gundel (2006) the last term equals infQ0∈Q0 EQ0 [u(I(λ̃2dP̂ /dQ̂0))],

and I(λ̃2dP̂/dQ̂0) satisfies the budget constraint. Thus, I(λ̃2dP̂ /dQ̂0) is a solution to Prob-

lem (16), and the UBSR constraint is not binding. In order to prove uniqueness we proceed

as follows: Assume that X̃ ∈ X (x0, x1) solves Problem (16). Then we have EP̂ [X̃] ≤ x0 and

hence

inf
Q0∈Q0

EQ0 [u(X̃)] ≤ EQ̂0
[u(X̃)] ≤ EQ̂0

[u(X∗)].

The second inequality holds strictly unless X̃ = X∗ Q̂0- and hence R-almost surely. This

follows from the fact that X∗ is the solution to Problem (20) under P̂ and Q̂0 and from the

uniqueness result in Theorem 4.3. But the strict inequality is a contradiction to EQ̂0
[u(X∗)] =

infQ0∈Q0 EQ0 [u(X∗)] = infQ0∈Q0 EQ0 [u(X̃)]. Thus X̃ = X∗ R-almost surely.

(iv) Let P ′ = P ∗, Q′
1 = Q∗

1, and Q′
0 = Q∗

0. Since (λ∗1, λ
∗
2) minimizes vλ1,λ2(P

∗|Q∗
1|Q∗

0) +

λ1x1 + λ2x0 it follows from Corrolary 4.8 that the two terms in the brackets on the right-

hand side of (47) equal zero for λ1 = λ∗1 and λ2 = λ∗2. Proposition 5.8 implies that X∗

satisfies the constraints and that EQ∗0 [u(X∗)] = infQ0∈Q0 EQ0 [u(X∗)]. This concludes the

proof of (45) and of the optimality of X∗. Both constraints are binding due to the assump-

tion supQ1∈Q1
EQ1 [`(−I(λ̃2dP̂/dQ̂0))] ≥ x1. Furthermore, in this case, the robust utility

maximization problem is equivalent to the classical problem with Q0 = {Q∗
0}. Now the

uniqueness follows in the same way as in (iii).

A Auxiliary Results

In this section we collect properties of the deterministic functions x∗ and L. Remember that x̄u = 0.
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We consider a family of functions gy1,y2 with y1, y2 ≥ 0, defined by

gy1,y2(x) := u(x)− y1`(−x)− y2x.

In the following we will sometimes drop the indices y1, y2 if there is no danger of confusion.

Lemma A.1. (i) gy1,y2 is strictly concave and thus continuous on its essential domain

dom(gy1,y2) = dom(u).

(ii) gy1,y2 attains its supremum on R if and only if y2 > 0. In this case, the maximizer is unique and
equals

(48) x∗(y1, y2) :=





J(y1, y2) if y2 > u′(x̄`) + y1`
′(−x̄`+),

x̄` if u′(x̄`) ≤ y2 ≤ u′(x̄`) + y1`
′(−x̄`+),

I(y2) if y2 < u′(x̄`).

Here J(y1, y2) denotes the unique solution to the equation u′(x) + y1`
′(−x) = y2 for the case that

y2 > u′(x̄`) + y1`
′(−x̄`+), and I := (u′)−1.

(iii) If x̄` = ∞, (48) simplifies to
x∗(y1, y2) = J(y1, y2).

(iv) The function x∗ : [0,∞)× (0,∞) → (0,∞), defined in (48), is continuous.

(v) x∗(y1, y2) is decreasing in y2 for y1 ≥ 0 fixed, and increasing in y1 for y2 > 0 fixed.

(vi) For fixed y1 ≥ 0, we have x∗(y1,∞) := limy2→∞ x∗(y1, y2) = 0, x∗(y1, 0) := limy2→0 x∗(y1, y2) = ∞.

(vii) If α ≥ 1, then x∗(αy1, αy2) ≤ x∗(y1, y2).

(viii) Let L : R→ [−x̄`, 0] be the generalized inverse of the derivative of the loss function `, i.e.,

(49) L(y) :=





0 if y ≥ `′(0),

(`′)−1(y) if `′(−x̄`+) < y < `′(0),

−x̄` if y ≤ `′(−x̄`+).

L is a continuous function which is strictly increasing on [`′(−x̄`+), `′(0)].

If e > 0 is such that `′(−x̄`+) < e < `′(0), and µ := u′(−L(e)), then we have for all y1 ≥ 0,

x∗(0, µ) = x∗(y1, µ + y1e).

(ix) Let c̃ : R+ → R+ be decreasing with limy1→∞ c̃(y1) = c > 0. Then

lim
y1→∞

x∗(y1, c̃(y1) · y1) = −L(c) ∈ [0, x̄`].

Moreover, x∗(y1, cy1) converges for y1 →∞ to −L(c) monotonously from above.

(x) Define

v(y2, y1, y0) : = sup
x>0

{y0u(x)− y1`(−x)− y2x}

= y0u

(
x∗

(
y1

y0
,
y2

y0

))
− y1`

(
−x∗

(
y1

y0
,
y2

y0

))
− y2x

∗
(

y1

y0
,
y2

y0

)(50)

for y2 > 0, y1 ≥ 0, and y0 > 0. v is convex and continuously differentiable with derivatives

(51)
∂

∂y0
v(y2, y1, y0) = u

(
x∗

(
y1

y0
,
y1

y0

))
,
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(52)
∂

∂y1
v(y2, y1, y0) = −`

(
−x∗

(
y1

y0
,
y2

y0

))
,

and

(53)
∂

∂y2
v(y2, y1, y0) = −x∗

(
y1

y0
,
y2

y0

)
.

Hence v is decreasing in y1, and it is decreasing in y2 if 0 = 0.

Furthermore,

v(0, y1, y0) := lim
y2→0

v(y2, y1, y0) = y0u(∞)− y1`(−∞) := lim
x→∞

(y0u(x)− y1`(−x))

for y1 ≥ 0, y0 > 0.

(xi) Define

(54) ṽ(y2, y1) := sup
x>0

{−y1`(−x)− y2x} = −y1`

(
L

(
y2

y1

))
+ y2L

(
y2

y1

)

for y2 > 0 and y1 > 0. ṽ is convex and continuously differentiable with derivatives

∂

∂y1
ṽ(y2, y1) = −`

(
L

(
y2

y1

))
,

and
∂

∂y2
ṽ(y2, y1) = L

(
y2

y1

)
.

Furthermore, limy2→0 ṽ(y2, y1) = 0 and limc→∞
ṽ(cx,1)

c = 0.
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