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Abstract

Reliable risk measurement is a key problem for financial institutions and regulatory authorities.
The current industry standard Value-at-Risk has several deficiencies. Improved risk measures have
been suggested and analyzed in the recent literature, but their computational implementation has
largely been neglected so far. We propose and investigate stochastic approximation algorithms for
the convex risk measure Utility-based Shortfall Risk. Our approach combines stochastic root finding
schemes with importance sampling. We prove that the resulting Shortfall Risk estimators are consis-
tent and asymptotically normal, and provide formulas for confidence intervals. The performance of
the proposed algorithms is tested numerically. We finally apply our techniques to the Normal Copula
Model, which is also known as the industry model CreditMetrics. This provides guidance for future
implementations in practice.

Key words: Convex risk measures, shortfall risk, stochastic approximation, stochastic root finding, im-
portance sampling, exponential twisting, portfolio credit risk management

1 Introduction

The reliable measurement of financial risk is one of the key issues for financial institutions and regulatory

authorities. Distributions of profits and losses (P&L) are very complex, and risk measures are needed

to conveniently summarize the most important properties of the lower tail of a distribution. Although

very popular and widely used in practice, the industry standard Value-at-Risk (VaR) suffers from severe

deficiencies if considered as a measure of the downside risk: first, VaR penalizes diversification in many

situations; second, VaR does not take into account the structure of the P&L distribution beyond the

VaR. These serious shortcomings stimulated intense research on alternative risk measures. The axiomatic

theory of risk measures, initiated by the seminal paper of Artzner, Delbaen, Eber & Heath (1999),

has matured during the last ten years. Various improved risk measures have been designed, including

the risk measure Utility-based Shortfall Risk (SR) considered in this paper. An excellent survey on the

mathematical theory of risk measures is given by Föllmer & Schied (2004).
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The axiomatic framework of risk measurement is already well developed. The present paper considers

computational aspects. The practical implementation of improved risk measures relies on the availability

of efficient algorithms for their estimation. P&L distributions of realistic portfolio models are typically

highly complex and, thus, require Monte Carlo simulations when functionals of the P&L (like its mean,

moments, or downside risk quantified by a risk measure) need to be computed. We introduce efficient

algorithms for the direct estimation of Utility-based Shortfall Risk (SR). SR is a convex risk measure

that does not share the deficiencies of VaR. Our method for estimating SR relies on a recursive stochastic

approximation scheme.

The underlying ideas can be summarized as follows: The risk measure SR can be characterized as

the unique root of a decreasing function g : R → R that typically needs to be computed by Monte Carlo

simulation. A straightforward approach suggests to split the problem into two parts, see Dunkel & Weber

(2007):

(1) the design of a deterministic root finding procedure that would converge to the sought-after root,

if g were known;

(2) the construction of efficient Monte Carlo algorithms that enable the estimation of g(s) for each

given argument s ∈ R with sufficient precision.

Variance reduction techniques can be used to accelerate the estimation of the function g(s) at each given

argument s ∈ R. This approach is closely related to sample average methods in stochastic programming,

see, for example, Kleywegt, Shapiro & de Mello (2001), Linderoth, Shapiro & Wright (2006), Mak, Morton

& Wood (1999), Shapiro (2003), Shapiro & Nemirovski (2005), Verweij, Ahmed, Kleywegt, Nemhauser

& Shapiro (2003), and Shapiro & Ruszczynski (2008).

An alternative to a combination of Monte Carlo estimators and deterministic root finding schemes

is provided by integrated stochastic approximation algorithms that are presented in this paper. These

exploit the whole structure of the root finding problem by combining variance reduction techniques with

stochastic root finding. Thereby, they take advantage of cross-averaging of errors for different arguments of

the function g – an effect that is neglected whenever deterministic root finding schemes are applied. While

we consider a one-dimensional stochastic root-finding problem, stochastic approximation schemes are

also efficient tools for the solution of multi-dimensional optimization problems in stochastic programming

whenever the objective function is given in terms of an expectation, cf. Juditsky, Lan, Nemirovski &

Shapiro (2009).

In this paper, we will concentrate on the estimation of the improved, convex risk measure SR. Our

strategy, however, can easily be extended to the efficient estimation of the industry standard VaR. The

recent literature on VaR focusses mostly on the efficient estimation of the probability of large losses, see

e.g. Glasserman (2004), Kang & Shahabuddin (2005), and Glasserman, Kang & Shahabuddin (2007).

VaR can indeed be determined by inverting the distribution function, i.e., by solving a deterministic

root finding problem. Clearly, this standard approach for the estimation of VaR does not exploit any

cross-averaging effects. More efficient, direct VaR estimators can be constructed by combining the various

variance reduction techniques for VaR with stochastic root finding procedures analogous to those discussed

below.1

1A similar approach has independently been taken in an interesting paper by Bardou, Frikha & Pages (2009). This
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The paper is organized as follows. Section 2 reviews the definitions and properties of VaR and SR. In

Section 3 we present stochastic approximation algorithms for the estimation of SR. In Sections 3.1 & 3.2

we analyze these algorithms for SR. We show that the estimators are consistent and approximately nor-

mal, and we provide formulas for their rate of convergence and their asymptotic variance. We numerically

investigate the performance of the proposed stochastic root finding algorithms for various stylized P&L

distributions in Section 4. In Section 5 we demonstrate that the algorithms can successfully be imple-

mented for credit portfolio models that are used in practice. For simplicity, we focus on the Normal Copula

Model and show how the algorithms can be combined with variance reduction techniques as discussed in

Dunkel & Weber (2007). However, the proposed methods can easily be extended to more complex models

like the t-copula model, see Kang & Shahabuddin (2005).

2 Value-at-Risk vs. Utility-based Shortfall Risk

In Section 2.1 we shall recall the definition and basic properties of VaR. Subsequently, the convex risk

measure Utility-based Shortfall Risk (SR), a useful alternative to VaR, will be defined and discussed in

Section 2.2.

2.1 Value-at-Risk

We denote by X the overall profit and loss (P&L) distribution of a financial position over a fixed time

horizon T . Assuming that X is a random variable on some probability space (Ω,F , P ), the risk measure

VaR at level λ ∈ (0, 1) can be defined as

VaRλ(X) := inf{c ∈ R | P [X + c < 0] ≤ λ}

VaR corresponds to a quantile of the distribution of X. Equivalently, for any given level λ ∈ (0, 1), the

VaR of a position is the smallest monetary amount that needs to be added to the position such that the

probability of a loss does not exceed λ. Typical values for λ which are used in practice are λ = 0.05 or

λ = 0.01.

VaR has become very popular and is widely used in practice nowadays, cf. Jorion (2000). In partic-

ular, considerable effort has been devoted towards developing efficient Monte Carlo (MC) methods for

estimating VaR in realistic credit risk and market models, see e.g. Glasserman (2004), Glasserman et al.

(2007), and the references therein. Unfortunately, VaR suffers from two drawbacks. Firstly, it does not

assess portfolio diversification as being beneficial. Mathematically, this is due to the fact that VaR is a

non-convex risk measure. Secondly, VaR does not take into account the size of very large losses that might

occur in the case of a severe default event. The latter aspect can be illustrated by the following simple

example. Consider two portfolios modeled by the random variables X1 and X2, respectively, where

X1 =

+1 $, with probability 99 %,

−1 $, with probability 1 %,

working paper became available online in the end of December 2008 after the original submission of our manuscript.
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and

X2 =

+1 $, with probability 99 %,

−1010 $, with probability 1 %.

A value Xi ≥ 0 corresponds to the event ‘no loss’, whereas Xi < 0 means ‘loss’, i = 1, 2 . Setting λ = 0.01,

one finds

VaRλ(X1) = VaRλ(X2) = −1 ≤ 0.

Hence, according to this VaR, both portfolios would be equally acceptable.2 In this example, however,

the first portfolio is clearly preferable. For more complicated models, the amplitude of losses is usually

much less obvious. Therefore, risk allocation based on VaR criteria may result in a concentration in

the portfolio position with the smallest loss probability, even if the potential loss associated with this

position is extremely large. The severe drawbacks of VaR have stimulated intense research on alternative

risk measures, leading among others to the definition of convex SR as a useful alternative to VaR, see

e.g. Föllmer & Schied (2004), Weber (2006), Giesecke, Schmidt & Weber (2008), and Föllmer, Schied &

Weber (2008).

2.2 Utility-based Shortfall Risk

A useful alternative to VaR is provided by the convex risk measure Utility-based Shortfall Risk (SR). In

order to define SR, we recall that an increasing, non-constant function ` : R → R is called a loss function.

Definition 2.1. Let (Ω,F , P ) be a probability space, ` a convex loss function and λ a point in the

interior of the range of `. We define an acceptance set by

A := {X ∈ L∞ : E[`(−X)] ≤ λ}.

The corresponding risk measure

SR`,λ(X) := inf{m ∈ R : m+X ∈ A}, X ∈ L∞,

is called Utility-based Shortfall Risk with loss function ` and threshold level λ.

Let us recall some properties of Utility-based Shortfall Risk. For a more detailed discussion we refer

the reader to Föllmer & Schied (2004), Weber (2006), Giesecke et al. (2008), and Föllmer et al. (2008).

Remark 2.2. (1) Utility-based Shortfall Risk is closely related to expected utility theory of von Neu-

mann & Morgenstern, and Savage. Setting u(x) = −`(−x), we can define the von Neumann &

Morgenstern expected utility of X ∈ L∞ by U(X) := E[u(X)]. Acceptability of a position X in

terms of the risk measure SR`,λ in Definition 2.1 amounts to requiring that the utility U(X) is at

least −λ.

(2) Utility-based Shortfall Risk is a distribution-based convex risk measure which is continuous from

above and below, see Föllmer & Schied (2004).

2Generally, a position is considered acceptable if its risk measure is negative.
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(3) If % is Utility-based Shortfall Risk associated with the convex loss function ` and threshold level λ,

i.e. % = SR`,λ, then % admits a robust representation in terms of the family M1(P ) of all probability

measures that are absolutely continuous with respect to P ,

SR`,λ(X) = max
Q∈M1(P )

(EQ(−X)− αmin (Q)) , X ∈ L∞,

with minimal penalty function

αmin (Q) = inf
z>0

1
z

(
λ+ E

[
`∗
(
z
dQ

dP

)])
, Q ∈M1(P ),

where `∗(y) = supx∈R(yx − `(x)) is the convex conjugate of `. Compared to the general case of

convex risk measure, the calculation of the penalty function is substantially simplified.

(4) Utility-based Shortfall Risk is invariant under randomization which formalizes the following idea.

Suppose that the financial positions X1, X2 ∈ L∞ are acceptable with respect to a given risk

measure %, i.e. %(X1) ≤ 0 and %(X2) ≤ 0. Let Y be an independent Bernoulli random variable

which take the value 0 with probability α and the value 1 with probability 1 − α for α ∈ (0, 1).

Consider the randomized position or compound lottery X given by

X(ω) =

 X1(ω), if Y (ω) = 0

X2(ω), if Y (ω) = 1
(ω ∈ Ω)

If % = SR`,λ is Utility-based Shortfall Risk, then %(X) ≤ 0, i.e. X is acceptable, if X1 and X2 are

acceptable. This implication might economically be plausible in many situations.

An analogous statement holds also, if X1 and X2 are both not acceptable, i.e. %(X1) > 0 and

%(X2) > 0. In this case, %(X) > 0 and the compound lottery X is also not acceptable.

It turns out that invariance under randomization is closely related to the weak dynamic consistency

of risk measurements, see Weber (2006).

(5) The domain of SR does not have to be restricted to L∞ but can be extended to larger spaces, as

long as suitable integrability conditions are satisfied.

The following implicit characterization of Utility-based Shortfall Risk as the root of a function is

particularly useful for the numerical estimation of the downside risk, cf. Föllmer & Schied (2004).

Proposition 2.3. Let SR`,λ be Utility-based Shortfall Risk associated with the convex loss function ` and

the threshold level λ. Suppose that X ∈ L∞. Then the following statements are equivalent.

(1) SR`,λ(X) = s∗

(2) E [`(−X − s∗)] = λ

Proposition 2.3 is the basis for the estimation algorithm that we propose in Section 3. SR`,λ(X) is

the unique zero s∗ of the function

g(s) := E [`(−X − s)]− λ. (1)

A stochastic approximation method for determining s∗ can be subdivided into two partial tasks:
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(1) Use a stochastic approximation algorithm that produces a random sequence (sk)k∈N which converges

almost surely to the root s∗. The value sk+1 will be recursively chosen given sk. This requires an

estimator of g(sk). This estimator should have small variance.

(2) Given a model or certain statistics for X, find an estimator for g(s) at any given point s that has

small variance. In many cases, variance reduction techniques can be used to improve the estimator’s

efficiency. So far almost all of the literature has focused on variance reduction techniques for VaR.

We will, however, show in Section 5 how these methods can be adopted for the superior risk measure

SR, see also Dunkel & Weber (2007).

3 Stochastic Approximation Algorithms

The aim of the this section is to construct an algorithm that converges rapidly to the root s∗ of the

function g defined in (1). In contrast to the preceding section, we do not have to restrict attention to

X ∈ L∞, but can allow for more general spaces of random variables.3

We analyze properties of two stochastic approximation algorithms: the standard Robbins-Monro

algorithm, and the Polyak-Ruppert algorithm that averages the slowed iterates.

3.1 The Robbins-Monro Algorithm

We denote by (Ω,F , P ) some sufficiently rich probability space.4 For s ∈ [a, b] we will simulate random

variables with expectation g(s) in order to construct the sequence (sn)n∈N that converges to the unique

zero s∗ of the function g. A generic Robbins-Monro algorithm can be described as follows.

3.1.1 The Algorithm

For s ∈ [a, b], we denote by Ŷs : [0, 1] → R a measurable function such that

g(s) = E
[
Ŷs(U)

]
(2)

for any on [0, 1] uniformly distributed random variable U . The functions Ŷs can be chosen appropriately

to increase the efficiency of the stochastic root finding scheme. A simple, but often not very efficient choice

is Ŷs(·) = `(−q(·) − s) − λ where q denotes the quantile function of X. We will discuss in Section 3.1.2

how importance sampling techniques can be incorporated in the definition of Ŷs and discuss consistency

and asymptotic normality for this case.

For practical and mathematical reasons we construct algorithms that are restricted to a bounded

domain. Letting −∞ < a < s∗ < b <∞, we define for x ∈ R a projection Π : R → [a, b] onto the interval

[a, b] by

Π(x) =


a, x ≤ a

x, a < x < b

b, b ≤ x

3However, if X ∈ L∞ is satisfied, the conditions for asymptotic normality can substantially be simplified.
4The assumption that the true probability measure P is precisely known is, of course, an idealization. Real applications

typically involve model uncertainty. The measure P should be interpreted as a probability measure that has been chosen

for modeling purposes.
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A Robbins-Monro algorithm for s∗ can now be constructed as follows:

• Choose a constant γ ∈
(

1
2 , 1
]
, c > 0, and a starting value s1 ∈ [a, b].

• For n ∈ N we define recursively:

sn+1 = Π
[
sn +

c

nγ
· Yn

]
(3)

with

Yn = Ŷsn
(Un). (4)

for a sequence (Un) of independent, unif[0,1]-distributed random variables.

Remark 3.1. Define the corresponding filtration

Fn = σ (Yi : i < n) , n ∈ N, (5)

we can rewrite the algorithm as

sn+1 = sn +
c

nγ
g(sn) +

c

nγ
δMn +

c

nγ
Zn (6)

where δMn = Yn − g(sn), and Zn is the correction term defined according to (3) & (6). Observe that

g(sn) = E[Yn|Fn] implies that (δMn)n is a martingale difference sequence.

The analysis of the consistency and asymptotic optimality of the Robbins-Monro algorithm above

requires certain moment conditions. For this reason we define the following quantities:

Definition 3.2. For s ∈ [a, b], let Ŷs : [0, 1] → R be defined as in (2), and let U be a random variable

that is uniformly distributed on [0, 1]. We denote the variance of Ŷs(U) by

σ2(s) = var
(
Ŷs(U)

)
. (7)

For p > 0 we also define the higher centered moments

m2+p(s) = E

(∣∣∣Ŷs(U)− g(s)
∣∣∣2+p

)
. (8)

3.1.2 Importance Sampling

In order to improve the speed of the stochastic approximation algorithm, the functions Ŷs, s ∈ [a, b], in

(2) are constructed from the distribution of X + s by applying suitable variance reduction techniques. In

the current paper, we focus on the case of importance sampling.

Denote by q the quantile function of X. Then

g(s) = E[`(−q(U)− s)]− λ

for any on [0, 1] uniformly distributed random variable. In order to define an equivalent importance

sampling measure change, we let hs : R → R be a measurable function such that hs > 0 P -almost surely

and E[hs(q(U) + s)] = 1. hs defines an equivalent measure change by setting

dP̂s

dP
= hs (q(U) + s) .

We denote expectation and variance under P̂s by Ês and v̂ars, respectively.
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Definition 3.3. Denote the distribution function of q(U) + s under P̂s by F̂s, and its right-continuous

inverse by q̂s. We define

Ŷs(·) :=
`(−q̂s(·))− λ

hs(q̂s(·))
. (9)

Notation 3.4. Observe that we defined F̂s and q̂s as the distribution and quantile function of

q(U) + s

under P̂s. These are not the distribution and quantile functions of q(U) under P̂s which are given by

F̂s(·+ s) and q̂s − s, respectively.

Remark 3.5. Defining

Vn = q̂sn
(Un), (10)

we can rewrite equation (4) in the definition of the Robbins-Monro algorithm as Yn = `(−Vn)−λ
hs(Vn) .

Remark 3.6. Letting p > 0, it follows that for any random variable U that is uniformly distributed on

[0, 1] under the measure P ,

g(s) = E[`(−q(U)− s)− λ] = E
[
Ŷs(U)

]
= Ês

[
`(−q(U)− s)− λ

hs(q(U) + s)

]
,

σ2(s) = var
(
Ŷs(U)

)
= v̂ars

(
`(−q(U)− s)− λ

hs(q(U) + s)

)
,

m2+p(s) = E

(∣∣∣Ŷs(U)− g(s)
∣∣∣2+p

)
= Ês

(∣∣∣∣`(−q(U)− s)− λ

hs(q(U) + s)
− g(s)

∣∣∣∣2+p
)
.

3.1.3 Consistency

In the current section, we prove the consistency of the algorithm when the functions Ŷs are defined

according to (9). We make the following weak assumption.

Assumption 3.7. (1) g(s) is well-defined and finite for all s ∈ [a, b]

(2) sups∈[a,b] σ
2(s) <∞

Theorem 3.8. Assume that Ŷs, s ∈ [a, b], is given according to Definition 3.3, and suppose that As-

sumption 3.7 holds. Then sn → s∗ P -almost surely.

Proof. g is decreasing with s∗ being its only zero. Thus, the only limiting point of the ordinary differential

equation ṡ = g(s) is s∗. Theorem 5.2.1 in Kushner & Yin (2003) implies that sn → s∗ as n→∞ P -almost

surely if we can verify their conditions (A2.1) – (A2.5). (A2.1) is guaranteed by Assumption 3.7(2). (A2.2),

(A2.4), and (A2.5) are obvious. Since ` is convex, the function

[a, b] → R, s 7→ `(−q(U)− s)− λ

is continuous. Moreover, for s ∈ [a, b] we have

`(−q(U)− b)− λ ≤ `(−q(U)− s)− λ ≤ `(−q(U)− a)− λ. (11)

By Assumption 3.7(2) we have that `(−q(U)− b)−λ, `(−q(U)−a)−λ ∈ L1(P ). Thus, g(·) is continuous

on [a, b] by Lebesgue’s Dominated Convergence Theorem.
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Remark 3.9. The consistency of the Robbins-Monro algorithm does not rely on the fact that we de-

fined Ŷs, s ∈ [a, b], by an importance sampling procedure. Other variance reduction techniques can be

used instead. We refer to Theorem 5.2.1. in Kushner & Yin (2003) for general sufficient conditions for

consistency.

3.1.4 Asymptotic Normality

Under stronger conditions it can also be shown that the sequence (sn)n∈N is asymptotically normal. If

X ∈ L∞, then the following simple conditions suffice, which can easily be verified.

Assumption 3.10.

(1) The functions (hs)s∈[a,b] are uniformly bounded away from zero on any compact set.

(2) ` is continuously differentiable.

(3) hs is continuous for any s ∈ [a, b].

(4) c > (−2g′(s∗))−1.

In the general case where X ∈ L∞ is not necessarily satisfied, the following slightly more complicated

condition replaces Assumption 3.10. Assumption 3.11 follows from Assumption 3.10, if X ∈ L∞.

Assumption 3.11. (1) g is continuously differentiable.

(2) σ2(·) is continuous at s∗.

(3) c > (−2g′(s∗))−1.

(4) For some p > 0 and ρ > 0, we have sup|s−s∗|<ρm
2+p(s) <∞.

(5) For some ρ > 0, the family (Yn1{|sn−s∗|<ρ})n is uniformly integrable.

Proposition 3.12. If X ∈ L∞, then Assumption 3.10 implies Assumptions 3.7 & 3.11.

Proof. Assumption 3.7(1) is immediate. Also observe that g is continuous by Lebesgue’s dominated

convergence theorem, since ` is continuous. Since ` is continuously differentiable and |`′(−q(U) − s)| ≤
sup|x|≤‖X‖∞,s∈[a,b] |`′(−x− s)| < ∞ for s ∈ [a, b], Assumption 3.11(1) holds.

Observe further that for p ≥ 0

Ês

(∣∣∣∣`(−q(U)− s)− λ

hs(q(U) + s)
− g(s)

∣∣∣∣2+p
)

≤ sup
|x|≤‖X‖∞,s∈[a,b]

(∣∣∣∣`(−x− s)− λ

hs(x+ s)

∣∣∣∣+ |g(s)|
)2+p

<∞,

since ` and g are continuous and bounded on compacts and the functions (hs)s∈[a,b] are uniformly bounded

away from zero on any compact set. This implies that Assumptions 3.11(2)&(4) hold. Analogously, the

estimate

|Yn| ≤ sup
|x|≤‖X‖∞,s∈[a,b]

∣∣∣∣`(−x− s)− λ

hs(x+ s)

∣∣∣∣ < ∞

implies Assumption 3.11(5).
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Theorem 3.13. Assume that Ŷs, s ∈ [a, b], is given according to Definition 3.3, and suppose that As-

sumptions 3.7 & 3.11 hold.

If γ = 1, then
√
n · (sn − s∗) → N

(
0,
−c2σ2(s∗)

2cg′(s∗) + 1

)
.

If γ ∈
(

1
2 , 1
)
, then

√
nγ · (sn − s∗) → N

(
0,
−cσ2(s∗)
2g′(s∗)

)
.

Proof. We first verify that (A2.0)–(A2.7) on page 329 in Kushner & Yin (2003) hold. (A2.1) is satisfied

by Assumption 3.11(5). (A2.2) is a consequence of Theorem 3.8. (A2.4) follows from Taylor’s Theorem

and Assumption 3.11(1). (A2.5) follows from the fact that g(s∗) = 0. For (A2.6) observe that A = cg′(s∗).

By Assumption 3.11(3) we have A+1/2 = (2cg′(s∗)+1)/2 < 0, since g′(s∗) < 0. Thus, A and A+1/2 are

negative. The first part of (A2.7) follows from Assumptions 3.11(4), the second from Assumptions 3.11(2).

(A2.3) follows easily from Theorem 10.4.1 in Kushner & Yin (2003), since their assumptions (A4.1)–(A4.5)

are satisfied.

In summary, we have shown that Theorem 10.2.1 in Kushner & Yin (2003) applies which implies

the asymptotic normality. We finally need to verify the formula for the asymptotic variance. If γ = 1, the

stationary variance of the process U in Theorem 10.2.1 in Kushner & Yin (2003) is∫ ∞

0

exp((2cg′(s∗) + 1)t) · c2σ2(s∗)dt =
−c2σ2(s∗)

2cg′(s∗) + 1
.

If γ ∈
(

1
2 , 1
)
, the stationary variance of the process U in Theorem 10.2.1 in Kushner & Yin (2003) is∫ ∞

0

exp(2cg′(s∗)t) · c2σ2(s∗)dt =
−cσ2(s∗)
2g′(s∗)

.

Remark 3.14. (1) Note that the previous proof actually demonstrates that Theorem 10.2.1 in Kushner

& Yin (2003) applies, if Assumptions 3.7 & 3.11 are satisfied. For practical applications we will not

need this result in full generality. We will however need a similar result for the proof of Theorem 3.16

below.

(2) The asymptotic normality of the Robbins-Monro algorithm does not rely on the fact that we defined

Ŷs, s ∈ [a, b], by an importance sampling procedure. Other variance reduction techniques can be

used instead. We refer to Theorem 10.2.1. in Kushner & Yin (2003) for general sufficient conditions.

Remark 3.15. (1) Asymptotically, the choice γ = 1 gives the best rate of convergence. However, if

the step size decreases too quickly, convergence might be slow in practice for finite time horizons.

(2) The asymptotic variance in Theorem 3.13 involves an unknown constant c. For example, the optimal

choice for the exponent γ = 1 is c = −(2g′(s∗)+1)/g′(s∗)2 which depends on the unknown constant

g′(s∗). Adaptive procedures that choose the constant c dynamically by estimating g′(s∗) adaptively

have been suggested in the literature, see e.g. Ruppert (1991), but are generally not as efficient as

the Polyak-Ruppert averaging estimators discussed in Section 3.2.
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3.2 Polyak-Ruppert Averaging

The optimal asymptotic variance of the Robbins-Monro algorithm relies on the choice of the constant c in

(3) which is not known a priori. Ruppert (1988), Ruppert (1991), Polyak (1990), and Polyak & Juditsky

(1992) suggest as an alternative estimation procedure to average the results of the slowed Robbins-Monro

algorithm. We next discuss a Polyak-Ruppert algorithm for Utility-based Shortfall Risk, and compare

the Robbins-Monro algorithm and the Polyak-Ruppert algorithm in numerical case studies.

We will restrict our attention to the case where the value of the considered portfolio is a random

variable in L∞. This allows to prove the asymptotic normality of a Polyak-Ruppert estimator that uses a

maximum window of averaging, see Kushner & Yang (1995). However, the asymptotic properties of the

estimator can also be studied if the boundedness assumption on the portfolio is dropped. For estimators

that use a minimal window of averaging of fixed size, asymptotic normality holds under weaker conditions,

see Theorem 11.1. in Kushner & Yin (2003). For estimators that use a maximal window of averaging the

asymptotic variance can still be identified, see Theorem 11.3.1 in Kushner & Yin (2003).

The following theorem describes the Polyak-Ruppert algorithm for Utility-based Shortfall Risk and

states its consistency and asymptotic normality:

Theorem 3.16. Suppose that X ∈ L∞, γ ∈
(

1
2 , 1
)

and that Assumption 3.10 holds. Assume that (sn) is

given according to (3). For arbitrary t > 0 we define

s̄n =
1
t · n

(t+1)n∑
i=n

si, (12)

where any upper summation index u ∈ R+ is interpreted as the largest natural number that does not

exceed u. For every ε > 0 there exists another process s̆ such that P (s̄n = s̆n ∀n) ≥ 1− ε and

√
tn · (s̆n − s∗) → N

(
0,

σ2(s∗)
(g′(s∗))2

)
. (13)

Proof. The convergence s̄n → s∗ P -almost surely follows from the convergence of the sequence (sn).

The process s̆ is constructed as follows. Choose N large enough such that

P (|sn − s∗| ≤ max(|s∗ − a|, |s∗ − b|) ∀n ≥ N) ≥ 1− ε.

Set

s̃n+1 =

 sn+1, n < N,

s̃n + c
nγ · Ŷs̃n

(Un), n ≥ N

We define s̆n = 1
t·n
∑(t+1)·n

i=n s̃i. By construction, P (s̄n = s̃n ∀n) ≥ 1− ε. In order to prove the asymptotic

normality (13), it suffices to verify (13) for N = 1 and s1 ∈ [a, b].

This is a consequence of Theorem 4.2 in Kushner & Yang (1995). We need to verify their assumptions

(A4.1)-(A4.5). (A2.1) follows from Theorem 4.5.13 in Benveniste, Métivier & Priouret (1990). (A4.1) is

satisfied with qn = n, an = n−γ , and γ ∈ (1/2, 1). (A4.2) follows with g(s, u) = Ys(u) and ḡ(s) := g(s) for

s ∈ [a, b], and g(s, u) := ḡ(s) := g′(a)(s− a) + g(a) for s < a and g(s, u) := ḡ(s) := g′(b)(s− b) + g(b) for

s > b. This implies that ψj(s) = 0 for all j ∈ N and s ∈ R. The first part of (A4.4) is thus also obvious.

The second part follows from our definition of g(·, ·).
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Remark 3.17. The Polyak-Ruppert algorithm as described in Theorem 3.16 averages over slowed

Robbins-Monro iterates with γ < 1. Apart from an additional factor of 1/t, this Polyak-Ruppert al-

gorithm achieves the asymptotically best convergence rate, corresponding to that of a Robbins-Monro

algorithm with γ = 1. The asymptotic variance of the Polyak-Ruppert algorithm with γ < 1 equals the

best possible variance of the Robbins-Monro algorithm with γ = 1, see Theorem 3.13 and Remark 3.15.

In particular, this optimal variance is independent of the parameter c. However, due to the convexity

of the loss function `, the Polyak-Ruppert algorithm usually exhibits more bias towards values larger

than s∗, if c and t are chosen too large. The reason for this is as follows: The convexity of ` implies that

|g(s− ε)| > |g(s+ ε)| for ε > 0. Hence, on average, the step sizes |sn+1− sn| of the slowed Robbins-Monro

algorithm is larger for values sn < s∗ than for sn > s∗. This effect induces a bias of the Robbins-Monro

estimator toward values that are larger than s∗. However, this bias quickly vanishes in the case of the

‘pure’ Robbins-Monro algorithm. By contrast, due to the additional averaging procedure, the nth it-

erate s̄n of the Polyak-Ruppert algorithms will typically be more biased than the last iterate s(t+1)n

of the Robbins-Monro algorithm that was used to compute s̄n. A possible remedy might be to employ

regression-based root-finding schemes as suggested in Ruppert (1991). In practice, numerical case studies

for typical portfolio distributions can be used to choose reasonable parameters and to construct an effi-

cient algorithm. The resulting numerical scheme can afterwards be applied to practically relevant portfolio

distributions. The case studies in Section 4 consider, for example, a value of t on the order of 10%.

3.3 Estimator of the Asymptotic Variance

The asymptotic variance in (13) is given by the unknown quantity σ2(s∗)/(g′(s∗))2. In the present section

we will discuss how σ2(s∗) and g′(s∗) can be estimated based on the data that have already been generated

in the Robbins-Monro algorithm (3). Except for the computation of the estimators, this procedure does

not require any additional effort, since the simulation results can be recycled for this purpose after s∗

has been estimated. The proofs of the consistency of the estimators relies on a law of large numbers for

martingale difference sequences or, more generally, mixingales, see McLeish (1975) and Chow (1967).

3.3.1 Confidence intervals

Before we discuss these estimators, let us briefly recall how confidence intervals can be determined if

σ2(s∗) and g′(s∗) are known. In practice, these quantities are replaced by their estimators, and s̆n is

replaced by s̄n . For α ∈ (0, 1) let q := inf{x : Φ(x) ≥ 1−α/2} be the (1−α/2)-quantile where Φ denotes

the cumulative Gaussian distribution function. Then −q is the α/2-quantile,[
s̆n −

∣∣∣∣ σ(s∗)
g′(s∗)

√
tn

∣∣∣∣ · q, s̆n +
∣∣∣∣ σ(s∗)
g′(s∗)

√
tn

∣∣∣∣ · q]
is an approximate confidence interval for s∗ with confidence coefficient 1− α.

12



3.3.2 Estimation

Theorem 3.18. Suppose that X ∈ L∞, t > 0, and that Assumption 3.10 holds. Then we have

σ2(s∗) = lim
n→∞

1
tn

(t+1)n∑
i=n

Y 2
i , (14)

g(s) = lim
n→∞

1
n

n∑
i=1

`(−Vi + si − s)− λ

hsi
(Vi)

, (15)

g′(s) = lim
ε→0

lim
n→∞

1
εn

n∑
i=1

`(−Vi + si − s− ε)− `(−Vi + si − s)
hsi(Vi)

, (16)

where (Yn)n∈N and (Vn)n∈N are defined according to (4) and (10), respectively, and convergence holds

P -almost surely.

Remark 3.19. For the definitions of (Yn)n∈N and (Vn)n∈N in (4) and (10) observe that q̂s the quantile

function of q(U) + s under the measure P̂s, see Definition 3.3.

Proof. In order to prove (14), observe that for i ∈ N we have that

E
[
Y 2

i |Fi

]
− g(si)2 = σ2(si).

Thus, Mi := Y 2
i − g(si)2−σ2(si), i ∈ N, defines a martingale difference sequence. X ∈ L∞ together with

Assumption 3.10 imply that supi∈N ‖Mi‖∞ <∞. In particular, (Mi)i∈N is a square-integrable martingale

difference sequence and
∑

iE[M2
i ]/i2 <∞. By Corollary 1.9. in McLeish (1975),

lim
n→∞

1
n

n∑
i=1

M2
i = 0.

Hence, limn→∞
1
tn

∑(t+1)n
i=n M2

i = 0. Observe that

lim
n→∞

1
tn

(t+1)n∑
i=n

(
g(si)2 + σ2(si)

)
= σ2(s∗),

since g and σ are continuous, g(s∗) = 0 , and limn sn = s∗ P-a.s. Thus,

lim
n→∞

1
tn
·
(t+1)n∑

i=n

Y 2
i = lim

n→∞

1
tn
·
(t+1)n∑

i=n

(
Y 2

i − g(si)2 − σ2(si)
)

+ lim
n→∞

1
tn
·
(t+1)n∑

i=n

(
g(si)2 + σ2(si)

)
= σ2(s∗).

For the proof of (15) observe that

E

[
`(−Vi + si − s)− λ

hsi
(Vi)

∣∣∣∣Fi

]
= g(s).

Thus,
(

`(−Vi+si−s)−λ
hsi

(Vi)
− g(s)

)
i∈N

is a martingale difference sequence which is uniformly bounded in L∞

because of X ∈ L∞ and Assumption 3.10. Similar arguments as above imply (15).

Finally, (16) is an immediate consequence of (15).
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4 Numerical Case Studies

In both this section and Section 5 below, we test the performance of the proposed simulation scheme for

Utility-based Shortfall Risk (SR). First, we will analyze the stochastic approximation of SR for specific

distributions without importance sampling. This will illustrate the key factors that determine the perfor-

mance of the scheme. Later on, in Section 5 we will focus on the estimation of SR in a more realistic credit

portfolio model. There, we will investigate the effects of importance sampling. As it turns out, variance

reduction is often important to ensure a good performance of the stochastic approximation scheme.

4.1 Notation

The number of steps in one simulation run will be denoted by n′. Letting ρ ∈ (0, 1) be a constant, we

will compare simulation results sn′ for Robbins-Monro algorithm (3), and

s̄′n′ =
1
n′ρ

n′∑
i=n′(1−ρ)

si (17)

for the Polyak-Ruppert algorithm. The defining equation (12) of the Polyak-Ruppert scheme is recovered

from the latter equation (17) by setting n := n′(1− ρ) and t = ρ/(1− ρ). Accordingly, we set

Sn′ :=
√
n′γ(sn′ − s∗), (18)

and

S̄′n′ :=
√
n′ρ (s̄′n′ − s∗). (19)

Under suitable conditions, Sn′ and S̄′n′ are asymptotically normal, see Theorems 3.13 and 3.16. The

asymptotic variance of Sn′ is given by

Σ =

[−c σ2(s∗)]/[2g′(s∗)], γ ∈ (1/2, 1),

[−c2 σ2(s∗)]/[2c g′(s∗) + 1], γ = 1.
(20)

We estimate this quantity according to Theorem 3.18, using one simulation run with n′ steps.5 The

corresponding estimator is denoted by Σn′ . The asymptotic variance of S̄′n′ , given by

Σ̄ = σ2(s∗)/[g′(s∗)]2, (21)

is estimated analogously. We denote the corresponding estimator by Σ̄n′ .

4.2 Simulations

In applications, the loss amount L is often used as a starting point rather than the portfolio value X. L

is simply the negative of X, i.e. X = −L. Positive (negative) values of L correspond to losses (gains).

As the first simple example, we consider an exponential loss function

`(−x) = exp(−βx), β > 0 (22)
5σ2(s∗) can be estimated according to equation (14) with n = n′(1− ρ) and t = ρ

1−ρ
. g′(s∗) can be estimated according

to equation (16) with n = n′.
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Figure 1: Gaussian loss distribution and exponential loss function.– Asymptotically, the rescaled quanti-

ties Sn′ =
√
n′γ (sn′ − s∗) and S̄′n′ =

√
ρn′ (s̄′n′ − s∗) approach Gaussian distributions (cf. Theorems 3.13

and 3.16). The numerical results agree with the theoretical prediction (solid lines).

and Gaussian loss distribution, i.e., X := −L where L ∼ N (µ0, σ
2
0). In this case, SR`,λ can be calculated

in closed form:

SR`,λ(−L) = s∗ = µ0 +
βσ2

0

2
− log λ

β
, (23)

which is useful for testing the algorithms. With β = 0.5, λ = 0.05, and L ∼ N (µ0, σ
2
0) with µ0 = 0, σ0 = 1

we obtain the exact value SR`,λ = 6.24146 =: s∗. For constant n′, empirical means, variances, and

histograms are based on N = 10000 simulation runs. At the beginning of each run, the initial value s1 is

uniformly sampled from the interval [a, b] := [s∗− 10, s∗ +10]. We simulate and compare Robbins-Monro

(RM) algorithms with γ = 1.0 and γ = 0.7, respectively, and the Polyak-Ruppert (PR) algorithm with

γ = 0.7 and ρ = 0.1. If ρ is too large, the performance of the PR algorithm decreases. We set c = 100

which is close to the optimal choice for the RM algorithm. We increased the maximum number of steps

n′ = 20 per run to n′ = 105. Figures 1–2 illustrate that Sn′ =
√
n′γ (sn′ − s∗) and S̄′n′ =

√
ρn′ (s̄′n′ − s∗)

with s∗ = 6.24146 quickly converge to a Gaussian distribution, as predicted by Theorems 3.13 and

3.16. The construction of confidence intervals requires estimates of the asymptotic variances Σ and Σ̄.

Figure 3 shows the corresponding numerically obtained histograms for the estimators Σn′ and Σ̄n′ . This

demonstrates that a reasonable confidence interval can be obtained for n′ = 104.

As a second example we consider L ∼ N (µ0, σ
2
0) with (piecewise) polynomial loss function

`η(L− s) = η−1(L− s)η1{L>s} = η−1

(L− s)η, L ≥ s,

0, L < s.
(24)
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√
n′γ (sn′−s∗) and S̄′n′ =

√
ρn′ (s̄′n′−s∗), corresponding to the histograms

from Fig. 1. For large enough n′, the variances converge to the values predicted by Theorems 3.13/3.16

(dotted lines).

Robbins-Monro

N = 10000

c = 100

γ = 0.7

0

2

4

P
D

F

0.5 1 1.5 2 2.5

Σn′

n′ = 3× 102

n′ = 103

n′ = 104

Polyak-Ruppert

N = 10000

c = 100

γ = 0.7

ρ = 0.1

0

2

4

P
D

F

0.5 1 1.5 2 2.5

Σ̄n′

n′ = 3× 102

n′ = 103

n′ = 104

Figure 3: Gaussian loss distribution and exponential loss function.– Illustration of Theorem 3.18: His-

togram of the variances Σn′ and Σ̄n′ , using the estimators from Theorem 3.18, respectively. The vertical

lines indicate the exact results.

Setting η = 2, µ0 = 0, σ0 = 1 and λ = 0.05, the numerically obtained SR value is given by s∗ = 0.86937.

We compare the same algorithms as before, but with c > 15 and [a, b] = [s∗−5, s∗+5]. The starting point

s1 of the simulation is uniformly sampled from this interval. The algorithms show again good convergence

properties, cf. Figure 4. The PR algorithm shows better finite sample properties in this case than the

RM algorithm with γ = 1.

For the case γ = 0.7, numerical simulations show that Sn′ and S̄′n′ are very close to normal for

n′ = 105, but also for smaller n′ deviations from normality are not too large. Reasonable estimators Σn′

and Σ̄n′ of the asymptotic variances can be obtained for n′ = 105.

As a third example we consider a heavy-tailed loss distribution of the Frechet type, defined by the

cumulative distribution function

P [L < x] = exp
[
−(1 + ξ0x)−1/ξ0

]
, ξ0 > 0, (25)

and, again, SR with polynomial loss function (24). For η = 2, λ = 0.05 and ξ0 = 0.1, the SR value

can be estimated numerically as s∗ = 5.1486, cf. Fig. 5. Choosing c = 100 > (−2g′(s∗))−1 and [a, b] =

[s∗ − 5, s∗ + 5], the convergence of the algorithms is much slower than in the other two cases, cf. Figs. 4
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Figure 5: Heavy-tailed Frechet type loss distribution (25) and (piecewise) polynomial SR with λ = 0.05.–

Left: The different algorithms converge to the same SR value s∗ = 5.1486. Right: Sample variance of the

SR estimates in the left diagram. The convergence is considerably slower than in the case of light-tailed

Gaussian loss distributions, cf. Fig. 4.

and 5. The distributions of Sn′ in the case of the RM algorithms and S̄′n′ become reasonably close to

normal for n′ = 106. However, convergence of the estimators Σn′ and Σ̄n′ of the asymptotic variances is

extremely slow.

The examples illustrate that, without importance sampling, the algorithms work efficiently for P&L

distributions that are close to a normal, while their performance decreases significantly for heavy-tailed

distributions. In general, model specific variance reduction techniques can be used to ensure a good

performance of the algorithms even for heavy-tail distributions.

5 Application: Credit Portfolio Models

A standard example of a credit portfolio model is the Normal Copula Model (NCM), which was introduced

in Gupton, Finger & Bhatia (1997) and presents the foundation of CreditMetrics. Although frequently

used in practice, the NCM should, of course, not be considered as a realistic model. The purpose of the

this section is to illustrate how the proposed stochastic approximation techniques, when combined with
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Figure 6: NCM and polynomial SR with λ = 0.05 (without importance sampling).– Left: The different

algorithms converge slowly to the same SR value s∗ = 5.11 (determined from IS). Right: Sample variances

of the SR estimates in the left diagram. As evident from the diagrams, without IS the convergence is very

slow. The results are qualitatively similar to those obtained for the Frechet type heavy tail distribution,

cf. Fig. 5.

importance sampling, can be used to compute the downside risk for models that are more complex than

the simple examples in Section 4. Generally, our methods can be used in more general models like the

t-copula model that exhibits tail dependence. The importance sampling estimators for loss probabilities

in Kang & Shahabuddin (2005) can be extended to the case of SR.

The basic equations and properties of the NCM are briefly reviewed in Section 5.1. Subsequently, we

discuss the estimation of SR in the NCM and provide numerical examples.

5.1 Basic equations

We consider a portfolio with m positions (or obligors) over a fixed time horizon T . Each position is

subject to default risk. For each obligor i = 1, 2, . . . ,m, a random variable Di with values in {0, 1}
indicates whether or not i has defaulted at horizon T . Di = 1 corresponds to a default of position i. The

partial net loss associated with a default of the obligor i is given by a positive constant vi > 0. Assuming

no recovery, the overall loss L ≥ 0 of the portfolio over the horizon T can be written in the standard form

L =
m∑

i=1

viDi. (26)

Note that these models typically count losses as positive. If portfolio gains are not neglected, profits and

losses (P&L) are given by X = −L. If downside risk is measured by a risk measure %, then the risk of L

is given by %(−L).

The NCM is a threshold model describing a credit portfolio with m obligors, i.e. there exists an

m-dimensional random vector R = (R1, R2, . . . , Rm) and threshold levels r1, r2, . . . , rm ∈ R such that

Di = 1{Ri>ri}.

In the NCM it is specifically assumed that R is anm-dimensional normal random vector with standardized

one-dimensional marginals. Denoting by pi = P{Di = 1} the marginal default probability of the obligor
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i, we obtain that

ri = Φ−1(1− pi), (27)

where Φ is the cumulative distribution function of the standard normal distributionN (0, 1). Thus, instead

of directly choosing ri, one could also specify the marginal default probabilities p1, . . . , pm and determine

the threshold values r1, . . . , rm from Eq. (27). In industry applications of the NCM the covariance matrix

of the Gaussian vector R is often specified through a factor model of the form

Ri = Ai0εi +
d∑

j=1

AijZj , i = 1, . . . ,m, , d < m; (28)

1 = A2
i0 +A2

i1 + . . .+A2
id , Ai0 > 0, Aij ≥ 0. (29)

The systematic risk variables Z1, . . . , Zd and the idiosyncratic risks variables ε1, . . . , εm are chosen as

independent standard normal random variables. The parameters (Aij) determine the cross-coupling as

well as the relative size (influence) of the different risk factors on the latent variables R1, . . . , Rm. The

additional constraint (29) ensures that Ri ∼ N (0, 1) holds.

If R1, . . . , Rm are specified through the factor model above, the NCM obeys the following conditional

independence structure. Conditionally on the common factors Z = (Z1, . . . , Zd), the default indicators

Di are independently distributed. Conditional on the vector of systematic factors Z, the default events

{Di = 1} occur with probability

pi(Z) := P [Di = 1|Z] = Φ
(∑d

j=1AijZj − ri

Ai0

)
. (30)

In principle, it is straightforward to perform numerical MC studies on the basis of Eqs. (26)–(30). The

NCM model is uniquely determined by the parameter vector

(m, d, p1, . . . , pm, v1, . . . , vm, A11, . . . , Amd).

In a naive MC simulation one first draws the d independent random numbers (Zj)j=1,...,d from a standard

normal distribution and then calculates L according to (26). Repeating this procedure several times, one

can obtain estimators for functionals of L, e.g., the moments E[Ln] of the loss distribution or the loss

probabilities

P [L > c] = E[1{L>c}] ∈ [0, 1]. (31)

In the NCM the total portfolio loss is bounded from above, that is 0 ≤ L ≤ L+, L+ :=
∑m

i=1 vi and

it suffices therefore to consider c ∈ [0, L+]. When measuring downside risk, one is typically interested

in estimating rather rare events. In this case, the MC method outlined above becomes computationally

expensive, since the default events become very rare. Thus, naive MC estimators do often not provide

good estimates, unless very large sample sizes are considered. Accordingly, variance reduction techniques

become very important in practical applications. For example, Glasserman (2004) and Glasserman et al.

(2007) discuss efficient estimators for loss probabilities by applying the importance sampling method

exponential twisting. An analogous approach can be used to obtain numerically efficient MC estimators
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Figure 7: NCM and polynomial SR with η = 2.0 and λ = 0.05 (without importance sampling).– Asymp-

totically, the rescaled quantities Sn′ =
√
n′γ (sn′ − s∗) and S̄′n′ =

√
ρn′ (s̄′n′ − s∗) approach Gaussian

distributions (cf. Theorems 3.13 and 3.16). For large n′, the numerical results approach the theoretical

prediction (solid lines, obtained by using the estimators from Th. 3.18), but again convergence is very

slow.

for SR, if variance reduction techniques are combined with stochastic approximation techniques. We

consider as an example the piecewise polynomial loss function

`η(x) = η−1xη1{x≥0}(x), η > 1.

5.1.1 Independent default events: exponential twisting

An intermediate step in the design of efficient stochastic approximation algorithms is the construction of

importance sampling estimators for EP [`(L−s)]. If P̂s is another probability measure which is equivalent

to P with dP̂s

dP = hs(L−s), then EP [`(L−s)] = EP̂s

[
`(L−s)

hs(L−s)

]
. It follows that Jhs

n = n−1
∑n

k=1
`(Lk−s)

hs(Lk−s)

is an unbiased, consistent estimator of EP [`(L−s)], if the random variables Lk are sampled independently

from the distribution of L under P̂s. Since the estimator is unbiased, its mean square error can be expressed

as the square root of its variance. Thus, the mean square error becomes small, if and only if the variance

varP̂s

[
`(L−s)

hs(L−s)

]
is small. In the present case, we are primarily interested in events which correspond to

large L. To reduce the variance of the estimator, we need to transfer mass to these events. An exponential

twist refers to a density g which is exponential in L; i.e. we consider a class of measures P̂ θ
s , θ ≥ 0, with

dP̂ θ
s

dP
=

exp(θL)
exp[ψ(θ)]

,
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Figure 8: NCM model and polynomial loss function (without importance sampling).– Illustration of The-

orem 3.18: Histogram of the variances Σn′ and Σ̄n′ , using the estimators from Theorem 3.18, respectively.

Importance sampling yields considerable variance reduction, cf. Fig. 12 below.

where

ψ(θ) := logE[exp(θL)] =
m∑

i=1

log
[
1 + pi

(
eθvi − 1

)]
(32)

is the cumulant generating function of the loss variable L, and exp[ψ(θ)] is a normalizing constant. The

twist parameter θ has to be determined such that a good variance reduction is achieved (see discussion

below).

For the NCM with independent default events the discussed measure change is equivalent to a change

of the individual default probabilities. The defaults are still independent under P̂ θ
s . For the individual

default probabilities under P̂ θ
s we obtain that

p̂i(θ) := P̂ θ
s [Di = 1] :=

pie
θvi

1 + pi(eθvi − 1)
. (33)

As evident from Eq. (33), the new default probabilities p̂i do not only depend on the original default

probabilities pi, but also on the partial losses vi. In general, for θ > 0 the default probability of the

ith portfolio position is increased (in particular, we have p̂i(0) = pi). Hence, under the new measure P̂ θ
s

default events are more likely to occur. The inverse likelihood ratio for the change from P to P̂ θ
s can be

written as

dP
dP̂ θ

s

=
m∏

i=1

(
pi

p̂i(θ)

)Di
(

1− pi

1− p̂i(θ)

)1−Di

= exp[−θL+ ψ(θ)]. (34)

Denoting by E and Êθ
s the expectations under P and P̂ θ

s , respectively, we can write

E[`(L− s)] = Êθ
s

[
`(L− s) exp[−θL+ ψ(θ)]

]
. (35)

Hence, in the case of the piecewise polynomial loss function, importance sampling for

E[`(L− s)] = E[η−1(L− s)η1{L≥s}]

corresponds to generating samples of the quantity

η−1(L− s)η1{L≥s} exp[−θL+ ψ(θ)] (36)
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Figure 9: NCM, polynomial SR (η = 2.0, λ = 0.05), and exponential twisting.– Left: The different

algorithms converge to the same SR value s∗ = 5.11. Right: Sample variances of the SR estimates in the

right diagram. Convergence has considerably improved, cf. Fig. 6.

under the measure P̂ θ
s . The implementation of the sampling procedure is straightforward because of

Eq. (33). The probability distributions of the default indicators under P̂ θ
s are known, which implies that

L can easily be sampled.

It thus remains to discuss how the parameter θ can be determined such that the variance of the

estimator based on Eq. (36) is significantly smaller than the variance of the corresponding naive estimator

for the LHS of (35). Since the estimator is unbiased, it is equivalent to consider the second moment,

M2(s, θ) :=
1
η2
Êθ

s

[
(L− s)2η 12

{L≥s} exp[−2θL+ 2ψ(θ)]
]

=
1
η2
E
[
(L− s)2η 1{L≥s} exp[−θL+ ψ(θ)]

]
≤ M2(s, 0) exp[−θs+ ψ(θ)]. (37)

Here M2(s, 0) = E[(L− s)2η 1{L≥s}] is the second moment ‘without’ exponential twisting. Consequently,

instead of directly minimizing M2(s, θ), which is very difficult or even impossible in general, one can

at least minimize the upper bound on the RHS of inequality (37). A promising choice for the twisting

parameter is thus given by

θs =

u. s. of ψ′(θ) = s, s > ψ′(0);

0, s ≤ ψ′(0),
(38)

where the abbreviation ‘u. s.’ stands for ‘unique solution’. As discussed in the next section, this approach

is directly transferable to the case of non-independent defaults.

5.1.2 Dependent default events: conditional exponential twisting

Let us now return to the general case, where the default events of different portfolio positions may be

coupled. In this case, exponential twisting can be applied to the conditional distribution P [ · |Z] of the

indicator variables Di. Conditional on Z we are in the situation of the preceding section, since defaults

are conditionally independent given Z.

The basic idea of conditional exponential twisting is thus to replace in the formulae of Section 5.1.1
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Figure 10: NCM, polynomial SR (η = 2.0, λ = 0.05), and exponential twisting.– Asymptotically, the

rescaled quantities Sn′ =
√
n′γ (sn′ − s∗) and S̄′n′ =

√
ρn′ (s̄′n′ − s∗) approach Gaussian distributions (cf.

Theorems 3.13 and 3.16). For large n′, the numerical results approach the theoretical prediction (solid

lines, obtained by using the estimators from Theorem 3.18).

the default probabilities pi by the conditional default probabilities

pi(Z) := P [Di = 1|Z] = Φ
(∑d

j=1AijZj − xi

Ai0

)
. (39)

Analogous to Eq. (32), we define the conditional cumulant generating function by

ψ(θ, Z) := logE[exp(θL)|Z] =
m∑

i=1

log
[
1 + pi(Z)

(
eθvi − 1

)]
. (40)

As in Eq. (38), the parameter θ that governs the measure change can be determined. In the current case,

θ depends on the factor Z, i.e.

θs(Z) =

u.s. of ψ′(θ, Z) = s, s > ψ′(0, Z);

0, s ≤ ψ′(0, Z),
(41)

where

ψ′(θ, z) :=
∂

∂θ
ψ(θ, z) , ψ′(0, Z) = E[L|Z] =

m∑
i=1

vipi(Z). (42)

With these definitions, the corresponding MC algorithm reads as follows:

(1) Generate a d-dimensional Gaussian random vector of factor variables, Z ∼ N (0, 1d), where 1d

denotes the d× d-unity matrix.
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Figure 11: NCM, polynomial SR (η = 2.0, λ = 0.05), and exponential twisting.– Empirical mean values

and variances of the rescaled quantities Sn′ =
√
n′γ (sn′ − s∗) and S̄′n′ =

√
ρn′ (s̄′n′ − s∗), corresponding

to the histograms from Fig. 11. For large enough n′, the variances converge to the values predicted by

Theorems 3.13/3.16 (dotted lines, obtained by using the estimators from Th. 3.18).
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Figure 12: NCM, polynomial SR (η = 2.0, λ = 0.05), and exponential twisting.– Illustration of Theorem

3.18: Histogram of the variances Σn′ and Σ̄n′ , using the estimators from Theorem 3.18, respectively.

Importance sampling has led to a considerable variance reduction, cf. Fig. 8 above.

(2) Calculate

p̂i(θs(Z), Z) :=
pi(Z) eviθs(Z)

1 + pi(Z)
(
eviθs(Z) − 1

) (43)

with θs(Z) given by Eq. (5.1.2) and pi(Z) given by Eq. (39).

(3) Generate m Bernoulli-random numbers Di ∈ {0, 1}, such that Di = 1 with probability p̂i(θs(Z), Z).

(4) Calculate ψ(θs(Z), Z) from Eq. (40) and L =
∑m

i=1 viDi, and return the estimator

`(L− s) exp
[
−Lθs(Z) + ψ

(
θs(Z), Z

)]
. (44)

Here the exponential factor corresponds to the conditional likelihood ratio, compare Eq. (34).

As in the case of VaR, this algorithm yields a significant variance reduction provided the default

events are not too strongly correlated, i.e., if Aij � 1 holds for i ≥ 1. Otherwise, additional importance

sampling of the factor variables Z may turn out to be helpful, cf. Glasserman et al. (2007).
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5.2 Numerical results

For a numerical case study we consider a portfolio with m = 25 portfolio positions that are subdivided

into 5 classes with partial losses v1 = . . . = v5 = 1.00, v6 = . . . = v10 = 1.25, v11 = . . . = v15 = 1.50,

v16 = . . . = v20 = 1.75, and v21 = . . . = v25 = 2.00. The corresponding maximal loss is given by L+ = 37.5.

We assume that the marginal default probabilities are pi = 0.05, corresponding to threshold values

xi = 1.64488. The number of common factors is given by d = 6. The coupling parameters Aij = A(i, j) are

given by A(1, 1) = A(2, 1) = A(3, 1) = A(4, 1) = A(5, 1) = 0.1, A(6, 2) = A(7, 2) = A(8, 2) = A(9, 2) =

A(10, 2) = 0.1, A(11, 3) = A(12, 3) = A(13, 3) = A(14, 3) = A(15, 3) = 0.1, A(16, 4) = A(17, 4) =

A(18, 4) = A(19, 4) = A(20, 4) = 0.1, A(21, 5) = A(22, 5) = A(23, 5) = A(24, 5) = A(25, 5) = 0.1,

A(i, 6) = 0.1, for i = 1, . . . ,m, and A(i, j) = 0 otherwise. That is, positions within the same class j are

coupled with each other by means of the risk factor Zj where j = 1, . . . , 5, and all positions are coupled

by the common risk factor Z6. SR will be defined in terms of a polynomial loss function with exponent

η = 2 and threshold level λ = 0.05. The search interval is given by [a, b] = [s∗ − 5, s∗ + 5], and we used

c = 100. For constant n′, empirical means, variances, and histograms are based on N = 10000 simulation

runs. The initial value s1 is chosen according to a uniform distribution on [a, b].

5.2.1 Case studies without importance sampling

Without importance sampling, the stochastic approximation algorithms are slow. Figure 6 shows the

empirical mean and variance of the Robbins-Monro algorithms with γ = 1 and γ = 0.7, and the Polyak-

Ruppert algorithm with γ = 0.7 and ρ = 0.1. Figures 7 illustrates that Sn′ =
√
n′γ (sn′ − s∗) and

S̄′n′ =
√
ρn′ (s̄′n′ − s∗) converge to a Gaussian distribution, as predicted by Theorems 3.13 and 3.16, but

convergence is not particularly fast. The construction of confidence intervals relies on estimates of the

asymptotic variances Σ and Σ̄. Figure 8 shows the corresponding numerically obtained histograms for the

estimators Σn′ and Σ̄n′ . The convergence is poor, and the construction of reasonable confidence intervals

requires more than n′ = 104 steps.

5.2.2 Case studies with importance sampling

With importance sampling (IS), the stochastic approximation algorithms perform very well. We do not

modify the distribution of the factor Z, but use importance sampling only conditional on Z. To reduce

the numerical effort that is required to calculate the ‘optimal’ value θs, we calculated θs when the

importance sampling (IS) criterium (38) was met for the first time; subsequently, the value of θs was

repeatedly updated only after 0.1× n′max performed IS steps, where n′max is the fixed maximum value n′

per simulation run. Figure 9 shows the empirical mean and variance of the Robbins-Monro algorithms

with γ = 1 and γ = 0.7, and the Polyak-Ruppert algorithm with γ = 0.7 and ρ = 0.1. Figures 10

illustrates that Sn′ =
√
n′γ (sn′ − s∗) and S̄′n′ =

√
ρn′ (s̄′n′ − s∗) converge to a Gaussian distribution, as

predicted by Theorems 3.13 and 3.16. The approximation is excellent for n′ = 104. The empirical means

and variances of Sn′ =
√
n′γ (sn′−s∗) and S̄′n′ =

√
ρn′ (s̄′n′−s∗) are shown in Figure 11. The construction

of confidence intervals relies on estimates of the asymptotic variances Σ and Σ̄. Figure 12 shows that the

construction of reasonable confidence intervals requires not more than n′ = 104 steps.
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6 Concluding remarks

The proposed root finding algorithms present an efficient tool for the numerical computation of the risk

measure Utility-based Shortfall Risk. We proved their consistency and asymptotic normality, and provided

estimators for confidence intervals. Our numerical case studies demonstrate that the stochastic approxi-

mation algorithms exhibit good finite sample properties if they are combined with importance sampling.

The techniques were successfully implemented to estimate Shortfall Risk in the Normal Copula Model,

which underlies the industry model CreditMetrics. In numerical simulations, neither the Robbins-Monro

algorithm nor the Polyak-Ruppert algorithm were clearly superior. Generally, our approach can easily be

applied to more realistic models like the t-copula model. For future applications in practice, it is important

to adapt and optimize the algorithms for typical portfolio distributions. The latter part is conceptually

straightforward, since the underlying root finding schemes can be combined with various, model-specific

variance reduction techniques. This enables the design of algorithms that provide an efficient tool for the

fast measurement of the downside risk of real portfolios.
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