Time parameters and Lorentz transformations of relativistic stochastic processes
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Rules for the transformation of time parameters in relativistic Langevin equations are derived and
discussed. In particular, it is shown that, if a coordinate-time parameterized process approaches
the relativistic Jiittner-Maxwell distribution, the associated proper-time parameterized process con-
verges to a modified momentum distribution, differing by a factor proportional to the inverse energy.
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Stochastic processes (SPes) present an ubiquitous tool
for modelling complex phenomena in physics [1-3], bi-
ology [4, 5], or economics and finance [6-9]. Stochastic
concepts provide a promising alternative to deterministic
models whenever the underlying microscopic dynamics
of a relevant observable is not known exactly but plau-
sible assumptions about the underlying statistics can be
made. A specific area where the formulation of consistent
microscopic interaction models becomes difficult [10-12]
concerns classical relativistic many-particle systems. Ac-
cordingly, SPes provide a useful phenomenological ap-
proach to describing, e.g., the interaction of a relativistic
particle with a fluctuating environment [13-17]. Appli-
cations of stochastic concepts to relativistic problems in-
clude thermalization processes in quark-gluon plasmas,
as produced in relativistic heavy ion colliders [18-21], or
complex high-energy processes in astrophysics [22-25].

While these applications illustrate the practical rele-
vance of relativistic SPes, there still exist severe con-
ceptual issues which need clarification from a theoretical
point of view. Among these is the choice of the time-
parameter that quantifies the evolution of a relativistic
SP [26]. This problem does not arise within a nonrel-
ativistic framework, since the Newtonian physics postu-
lates the existence of a universal time which is the same
for any inertial observer; thus, it is natural to formulate
nonrelativistic SPes by making reference to this universal
time. By contrast, in special relativity [27, 28] the notion
of time becomes frame-dependent, and it is necessary to
carefully distinguish between different time parameters
when constructing relativistic SPes. For example, if the
random motion of a relativistic particle is described in
a t-parameterized form, where ¢ is the time coordinate
of some fixed inertial system X, then one may wonder
if/how this process can be re-expressed in terms of the
particle’s proper-time 7, and vice versa. Another closely
related question [17] concerns the problem of how a cer-
tain SP appears to a moving observer, i.e.: How does a
SP behave under a Lorentz transformation?

The present paper aims at clarifying the above ques-
tions for a broad class of relativistic SPes governed by
relativistic Langevin equations [13-17]. First, we will

discuss a heuristic approach that suffices for most prac-
tical calculations and clarifies the basic ideas. Subse-
quently, these heuristic arguments will be substantiated
with a mathematically rigorous foundation by applying
theorems for the time-change of (local) martingale pro-
cesses [29]. The main results can be summarized as
follows: If a relativistic Langevin-1td process has been
specified in the inertial frame ¥ and is parameterized
by the associated -coordinate time ¢, then this process
can be reparameterized by its proper-time 7 and the re-
sulting process is again of the Langevin-Ito type. Fur-
thermore, the process can be Lorentz transformed to a
moving frame ¥', yielding a Langevin-Ito process that is
parameterized by the ¥'-time ¢’. In other words, similar
to the case of purely deterministic relativistic equations
of motions, one can choose freely between different time
parameterizations in order to characterize these relativis-
tic SPes — but the noise part needs to be transformed
differently than the deterministic part.

Notation.— We adopt the metric convention (1,3) =
diag(—1,1,...,1) and units such that the speed of light
¢ = 1. Contra-variant space-time and energy-momentum
four-vectors are denoted by (z%) = (2°,2%) = (2%, ) =
(t,z) and (p®) = (p*,p") = (p°,p), respectively, with
Greek indices a« = 0,1,...,d and Latin indices ¢ =
1,...,d, where d is the number of space dimensions. Ein-
stein’s summation convention is applied throughout.

Relativistic Langevin equations.— As a starting point,
we consider the t-parameterized random motion of a
relativistic particle (rest mass M) in the inertial lab
frame 3. The lab frame is defined by the property that
the thermalized background medium (heat bath) caus-
ing the stochastic motion of the particle is at rest in
Y (on average). We assume that the particle’s trajec-
tory (X (t), P(t)) = (X(t), P'(t)) in ¥ is governed by a
stochastic differential equation (SDE) of the form [13-17]

dx(t) = (P*/PY) dt, (1a)
dPi(t) = A" dt+ C*;dBI(t). (1b)

Here, dX°(¢) = dt and dX'(t) := X(t + dt) — X'(t)
denote the time and position increments, dPi(t) :=



Pi(t + dt) — PY(t) the momentum change. P°(t) :=
(M? + P*)'/2 is the relativistic energy, and Vi(t) :=
dX?/dt = P?/P° are the velocity components in ¥. In
general, the functions A’ and C?; may depend on the
time, position and momentum coordinates of the parti-
cle. The random driving process B(t) = (B’(t)) is taken
to be a d-dimensional t-parameterized standard Wiener
process (WP) [29-31], i.e., B(t) has continuous paths,
for s > t the increments are normally distributed,

e—lul?/[2(s—1)]
P{B(s) — B(t) € [u,u + du]} = Br (s O d%u, (2)

and independent for non-overlapping time intervals [40].

Upon naively dividing Eq. (1b) by dt, we see that A
can be interpreted as a deterministic force component,
while C?;dB7(t)/dt represents random ‘noise‘. However,
for the Wiener process the derivatives dB7(t)/dt are not
well-defined mathematically so the differential represen-
tation (1) is in fact short hand for a stochastic integral
equation [29, 31] with C?;d B signifying an infinitesimal
increment of the It6 integral [32, 33]. Like a determin-
istic integral, stochastic integrals can be approximated
by Riemann-Stieltjes sums but the coefficient functions
need to be evaluated at the left end point t of any time
interval [t,t + dt] in the It6 discretization [41]. In con-
trast to other discretization rules [1, 29, 31, 34, 35], the
1t6 discretization implies that the mean value of the noise
vanishes, i.e., (C*;dB’(t)) = 0 with (- ) indicating an av-
erage over all realizations of the Wiener process B(t). In
other words, Itd integrals with respect to B(t) are (local)
martingales [29]. Upon applying It&’s formula [29, 31] to
the mass-shell condition P°(t) = (M? + P*)'/2, one can
derive from Eq. (1b) the following equation for the rela-
tivistic energy:

dP%(t) = A°dt + C°,.dB" (1), (3)
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where A; := A%, D;; :== DY =% CLCJ and Cy, := C",..

Equations (1) define a straightforward relativistic gen-
eralization [13-15] of the classical Ornstein-Uhlenbeck
process [36], representing a standard model of Brownian
motion theory [42]. The structure of Eq. (1a) ensures
that the velocity remains bounded, |V| < 1, even if the
momentum P were to become infinitely large. When
studying SDEs of the type (1), one is typically interested
in the probability f(t,x,p)d%zd?p of finding the par-
ticle at time ¢ in the infinitesimal phase space interval
[z, x+dx] X [p, p+dp]. Given Egs. (1), the non-negative,
normalized probability density f(¢,«,p) is governed by
the Fokker-Planck equation (FPE)
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where p° = (M? + p?)'/2. Deterministic initial data
X(0) = o and P(0) = p, translates into the localized
initial condition f(0,x, p) = §(x—xo) §(p—p,). Physical
constraints on the coefficients A’(¢,z, p) and C*,.(t, x, p)
may arise from symmetries and/or thermodynamic con-
siderations. For example, neglecting additional external
force fields and considering a heat bath that is stationary,
isotropic and position independent in X, one is led to the
ansatz

A= —a(p)p',

where the friction and noise coefficients « and D depend
on the energy p° only. Moreover, if the stationary mo-
mentum distribution is expected to be a thermal Jittner
function [37, 38], i.e., if foo 1= lim;_. o f o exp(—pFp°) in
¥, then o and D must satisfy the fluctuation-dissipation
condition [13]

0=a@”)p’ +dD(p")/dp’ — BD(P°). (5b)

In this case, one still has the freedom to adapt one of the
two functions « or D.

In the remainder, we shall discuss how the process (1)
can be reparameterized in terms of its proper-time 7, and
how it transforms under the proper Lorentz group [28].

Proper-time parameterization.— The proper-time dif-
ferential dr(t) = (1 — V?)1/2dt may be expressed as

C'y =12DE")? 6. (5a)

dr(t) = (M/P°)dt. (6a)

The inverse of the function 7 is denoted by X0(7) = ()
and represents the time coordinate of the particle in the
inertial frame 3, parameterized by the proper time 7.
Our goal is to find SDEs for the reparameterized pro-
cesses X%(7) := X°(t(7)) and P%(7) = P*(t(r)) in .
The heuristic derivation is based on the relation

dBY (t) ~ vVt :(1;;)) 1/2@ :(ﬁ) 1/2dBj(7'), (6h)

where Bj<7') is a standard Wiener process with time-
parameter 7. The rigorous justification of Eq. (6b) is
given below. Inserting Eqs. (6) in Egs. (1) one finds

dXe(r) = (P*/M)dr, (7a)

dPi(r) = A'dr+C'dB (1), (7b)
where A' = (P°/M)A(X° X,P) and C'ij =
(P°/M)Y/? C’ij(XO,X,P). The FPE for the associated
probability density f(r,°,x, p) reads

(8 L9 )f: 3,[—Aif+1a(f?““f) ®)

or ' M ox©

D* = S CiCk. We note that
f(r, 2% @, p) da®d?azd?p gives probability of finding the
particle at proper-time 7 in the interval [t, t+dt] x [, x+
dz] x [p,p + dp] in the inertial frame X.

where now
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FIG. 1: ‘Stationary’ probability density function (PDF) of
the absolute momentum |P| measured at time ¢ = 15 (X)
and 7 = 15 (o) from 10000 sample trajectories of the one-
dimensional (d = 1) relativistic Ornstein-Uhlenbeck pro-
cess [13], corresponding to coefficients D(p°) = const and
a(p®) = BD/p® in Eqgs. (1) and (5). Simulation parameters:

dt=0.001, M=c=8=D = 1.

Remarkably, if the coefficient functions satisfy the con-
straints (5) — so that the stationary solution fo, of Eq. (4)
is a Jiittner function ¢3(p) = Z lexp(—Bp") — then
the stationary solution foo of the corresponding proper-
time FPE (8) is given by a modified Jiittner function
drny(p) = 2 exp(—Bp°)/p°. The latter can be derived
from a relative entropy principle, using a Lorentz invari-
ant reference measure in momentum space [39]. Physi-
cally, the difference between f,, and foo is due to the fact
that measurements at ¢ = const and 7 = const are non-
equivalent even if 7,{ — oo. This can also be confirmed
by direct numerical simulation of Eqgs. (1), see Fig. 1.

Having discussed the proper-time reparameterization,
we next show that a similar reasoning can be applied to
transform the SDEs (1) to a moving frame ¥/ [17].

Lorentz transformations.— Neglecting time-reversals,
we consider a proper Lorentz transformation [28] from
the lab frame ¥ to ¥’, mediated by a constant matrix
A7, with A% > 0, that leaves the metric tensor 7.4
invariant. We proceed in two steps: First we define

Y (t) := AV XH(t) ,

G (t) == ¥, PH(2).

Then we replace t by the coordinate time ¢’ of ¥’ to obtain
processes X'*(t') = Y'*(t(¢')) and P*(t') = G'*(t(t')).

Note that d¢’(t) = dY"°(t) = A°,dX*(t), and, hence,
A°, PH G"° POt (1))
/ —_—
4#(0) = 5= dt = 7 & = =55 gy 0 ©)

where A1 is the inverse Lorentz transformation. Thus,
a similar heuristics as in Eq. (6b) gives

) 2 1/2
po 244 :|

dBi(t) ~ Vdt = <PO>1/\;@: [(A B (1),

where BJ (') is a Wiener process with time ¢/. Further-
more, defining primed coefficient functions in ¥’ by

A"’ p) = (A7)0, 0" /9] x
Ail, AV ((A—l)Oﬂxlu7 (A_l)iﬂitlu, (A_l)i#p/u’) ,
C/; (ZC/O, .’1}/7]),) = [(Afl)Oup
N, €7 (A7)0, (AT, (AT )

lp/p/O]l/Q %

“w

the particle’s trajectory (X'(t'), P'(t')) in X' is again

governed by a SDE of the standard form
dX/a(t/) — (P/a/PIO) dt/,
dP'(t') = A" dt' +C";dB(t).

(11a)
(11b)

Rigorous justification.— We will now rigorously de-
rive the transformations of SDEs under time changes and
thereby show that the heuristic transformations leading
to Egs. (7) and (11) are justified; i.e., we are interested
in a time-change t — f of a generic SDE

dY (t) = Edt + F; dB(¢), (12a)

where E and F; will typically be smooth functions of
the state-variables (Y, ...) [43], and B(t) = (B’(t)) is a
d-dimensional standard Wiener process [44]. We con-

sider a time-change t ~— { specified in the form [cf.
Egs. (6a) and (9)]

df = Hdt,  1(0) =0, (12b)

with H being a strictly positive smooth function [45]
of (Y,...). The inverse of (t) is denoted by t(f). We
would like to show that Eq. (12a) can be rewritten as

dY (f) = Edi + F; dB’ (1), (12¢)
Y (D), E() = E(td)/Ht{D),
\/ H(t()), and

where Y (i) =
Fi(l) = FI(t(D))/
dBI(f) :== VH dB’(t)

is a d-dimensional Wiener process with respect to the
new time parameter ¢ [46].
First, we need to prove that Eq. (12d) or, equiva-

lently, BJ t(t /H(s) dB(s) does indeed define
a Wiener process To thls end we note that for ﬁxed

j€{1,...,d} the process L (t fo VH(s)dBi(s) is a

continuoub local martingale, WhObe quadratlc varlatlon

o= i 3 {0 ((k;m) ()}

k=0

is given by [L7, L7]( f
quadratic variation of (f) =
B9, Bl = (L9, D)) = [ H(s)ds = L. For
i # j, we have (B9, Bi|() = [1© H(s )d[Bj,Bi](s) = 0.
Thus, Lévy’s Theorem [48] implies that B(f) = (B (1)) is
a d-dimensional standard Wiener process. Finally, using

(12d)

s)ds [47]. For the
( (f)) we then obtain



the definitions of YV, E, and FJ, we find [49]

. t(%) t(%) ]
Y(t) = ; E(s)ds—i—/o F;(s)dB’(s)
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- / B(3)d5 + / Fy(%)dB (3), (13)
0 0

which is just the SDE (12c) written in integral notation.

Summary.— The above discussion shows how rela-
tivistic Langevin equations of the type (1) can be Lorentz
transformed [17] and reparameterized within a common
framework. The relativistic Langevin theory [13-17] is
now as well-founded and mathematically complete as
the classical theories of nonrelativistic Brownian mo-
tions and deterministic relativistic motions (which are
both included as special limit cases). From a physics
point of view, the most remarkable observation consists
in the fact that the 7T-parameterized Brownian motion
converges to a modified Jiittner function [39] if the corre-
sponding t-parameterized process converges to a Jiittner
function [37]. With regard to applications [20, 21] this
means that the correct form of the fluctuation-dissipation
relation depends on the choice of the time-parameter in
the relativistic Langevin equation.
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