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Rules for the transformation of time parameters in relativistic Langevin equations are derived and
discussed. In particular, it is shown that, if a coordinate-time parameterized process approaches
the relativistic Jüttner-Maxwell distribution, the associated proper-time parameterized process con-
verges to a modified momentum distribution, differing by a factor proportional to the inverse energy.
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Stochastic processes (SPes) present an ubiquitous tool
for modelling complex phenomena in physics [1–3], bi-
ology [4, 5], or economics and finance [6–9]. Stochastic
concepts provide a promising alternative to deterministic
models whenever the underlying microscopic dynamics
of a relevant observable is not known exactly but plau-
sible assumptions about the underlying statistics can be
made. A specific area where the formulation of consistent
microscopic interaction models becomes difficult [10–12]
concerns classical relativistic many-particle systems. Ac-
cordingly, SPes provide a useful phenomenological ap-
proach to describing, e.g., the interaction of a relativistic
particle with a fluctuating environment [13–17]. Appli-
cations of stochastic concepts to relativistic problems in-
clude thermalization processes in quark-gluon plasmas,
as produced in relativistic heavy ion colliders [18–21], or
complex high-energy processes in astrophysics [22–25].

While these applications illustrate the practical rele-
vance of relativistic SPes, there still exist severe con-
ceptual issues which need clarification from a theoretical
point of view. Among these is the choice of the time-
parameter that quantifies the evolution of a relativistic
SP [26]. This problem does not arise within a nonrel-
ativistic framework, since the Newtonian physics postu-
lates the existence of a universal time which is the same
for any inertial observer; thus, it is natural to formulate
nonrelativistic SPes by making reference to this universal
time. By contrast, in special relativity [27, 28] the notion
of time becomes frame-dependent, and it is necessary to
carefully distinguish between different time parameters
when constructing relativistic SPes. For example, if the
random motion of a relativistic particle is described in
a t-parameterized form, where t is the time coordinate
of some fixed inertial system Σ, then one may wonder
if/how this process can be re-expressed in terms of the
particle’s proper-time τ , and vice versa. Another closely
related question [17] concerns the problem of how a cer-
tain SP appears to a moving observer, i.e.: How does a
SP behave under a Lorentz transformation?

The present paper aims at clarifying the above ques-
tions for a broad class of relativistic SPes governed by
relativistic Langevin equations [13–17]. First, we will

discuss a heuristic approach that suffices for most prac-
tical calculations and clarifies the basic ideas. Subse-
quently, these heuristic arguments will be substantiated
with a mathematically rigorous foundation by applying
theorems for the time-change of (local) martingale pro-
cesses [29]. The main results can be summarized as
follows: If a relativistic Langevin-Itô process has been
specified in the inertial frame Σ and is parameterized
by the associated Σ-coordinate time t, then this process
can be reparameterized by its proper-time τ and the re-
sulting process is again of the Langevin-Itô type. Fur-
thermore, the process can be Lorentz transformed to a
moving frame Σ′, yielding a Langevin-Itô process that is
parameterized by the Σ′-time t′. In other words, similar
to the case of purely deterministic relativistic equations
of motions, one can choose freely between different time
parameterizations in order to characterize these relativis-
tic SPes – but the noise part needs to be transformed
differently than the deterministic part.

Notation.– We adopt the metric convention (ηαβ) =
diag(−1, 1, . . . , 1) and units such that the speed of light
c = 1. Contra-variant space-time and energy-momentum
four-vectors are denoted by (xα) = (x0, xi) = (x0,x) =
(t,x) and (pα) = (p0, pi) = (p0,p), respectively, with
Greek indices α = 0, 1, . . . , d and Latin indices i =
1, . . . , d, where d is the number of space dimensions. Ein-
stein’s summation convention is applied throughout.

Relativistic Langevin equations.– As a starting point,
we consider the t-parameterized random motion of a
relativistic particle (rest mass M) in the inertial lab
frame Σ. The lab frame is defined by the property that
the thermalized background medium (heat bath) caus-
ing the stochastic motion of the particle is at rest in
Σ (on average). We assume that the particle’s trajec-
tory (X(t),P (t)) = (Xi(t), P i(t)) in Σ is governed by a
stochastic differential equation (SDE) of the form [13–17]

dXα(t) = (Pα/P 0) dt, (1a)
dP i(t) = Ai dt+ CijdBj(t). (1b)

Here, dX0(t) = dt and dXi(t) := Xi(t + dt) − Xi(t)
denote the time and position increments, dP i(t) :=
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P i(t + dt) − P i(t) the momentum change. P 0(t) :=
(M2 + P 2)1/2 is the relativistic energy, and V i(t) :=
dXi/dt = P i/P 0 are the velocity components in Σ. In
general, the functions Ai and Cij may depend on the
time, position and momentum coordinates of the parti-
cle. The random driving process B(t) = (Bj(t)) is taken
to be a d-dimensional t-parameterized standard Wiener
process (WP) [29–31], i.e., B(t) has continuous paths,
for s > t the increments are normally distributed,

P{B(s)−B(t) ∈ [u,u + du]} =
e−|u|

2/[2 (s−t)]

[2π (s− t)]d/2 ddu, (2)

and independent for non-overlapping time intervals [40].
Upon naively dividing Eq. (1b) by dt, we see that Ai

can be interpreted as a deterministic force component,
while CijdBj(t)/dt represents random ‘noise‘. However,
for the Wiener process the derivatives dBj(t)/dt are not
well-defined mathematically so the differential represen-
tation (1) is in fact short hand for a stochastic integral
equation [29, 31] with CijdBj signifying an infinitesimal
increment of the Itô integral [32, 33]. Like a determin-
istic integral, stochastic integrals can be approximated
by Riemann-Stieltjes sums but the coefficient functions
need to be evaluated at the left end point t of any time
interval [t, t + dt] in the Itô discretization [41]. In con-
trast to other discretization rules [1, 29, 31, 34, 35], the
Itô discretization implies that the mean value of the noise
vanishes, i.e., 〈CijdBj(t)〉 = 0 with 〈 · 〉 indicating an av-
erage over all realizations of the Wiener process B(t). In
other words, Itô integrals with respect to B(t) are (local)
martingales [29]. Upon applying Itô’s formula [29, 31] to
the mass-shell condition P 0(t) = (M2 + P 2)1/2, one can
derive from Eq. (1b) the following equation for the rela-
tivistic energy:

dP 0(t) = A0 dt+ C0
rdBr(t), (3)

A0 :=
AiP

i

P 0
+
Dij

2

[
δij

P 0
− P iP j

(P 0)3

]
, C0

j :=
P iCij
P 0

,

where Ai := Ai, Dij := Dij =
∑
r C

i
rC

j
r and Cir := Cir.

Equations (1) define a straightforward relativistic gen-
eralization [13–15] of the classical Ornstein-Uhlenbeck
process [36], representing a standard model of Brownian
motion theory [42]. The structure of Eq. (1a) ensures
that the velocity remains bounded, |V | < 1, even if the
momentum P were to become infinitely large. When
studying SDEs of the type (1), one is typically interested
in the probability f(t,x,p) ddxddp of finding the par-
ticle at time t in the infinitesimal phase space interval
[x,x+dx]×[p,p+dp]. Given Eqs. (1), the non-negative,
normalized probability density f(t,x,p) is governed by
the Fokker-Planck equation (FPE)(

∂

∂t
+
pi

p0

∂

∂xi

)
f =

∂

∂pi

[
−Aif +

1
2
∂

∂pk
(
Dikf

)]
, (4)

where p0 = (M2 + p2)1/2. Deterministic initial data
X(0) = x0 and P (0) = p0 translates into the localized
initial condition f(0,x,p) = δ(x−x0) δ(p−p0). Physical
constraints on the coefficients Ai(t,x,p) and Cir(t,x,p)
may arise from symmetries and/or thermodynamic con-
siderations. For example, neglecting additional external
force fields and considering a heat bath that is stationary,
isotropic and position independent in Σ, one is led to the
ansatz

Ai = −α(p0) pi , Cij = [2D(p0)]1/2 δij . (5a)

where the friction and noise coefficients α and D depend
on the energy p0 only. Moreover, if the stationary mo-
mentum distribution is expected to be a thermal Jüttner
function [37, 38], i.e., if f∞ := limt→∞ f ∝ exp(−βp0) in
Σ, then α and D must satisfy the fluctuation-dissipation
condition [13]

0 ≡ α(p0) p0 + dD(p0)/dp0 − βD(p0). (5b)

In this case, one still has the freedom to adapt one of the
two functions α or D.

In the remainder, we shall discuss how the process (1)
can be reparameterized in terms of its proper-time τ , and
how it transforms under the proper Lorentz group [28].

Proper-time parameterization.– The proper-time dif-
ferential dτ(t) = (1− V 2)1/2dt may be expressed as

dτ(t) = (M/P 0) dt. (6a)

The inverse of the function τ is denoted by X̂0(τ) = t(τ)
and represents the time coordinate of the particle in the
inertial frame Σ, parameterized by the proper time τ .
Our goal is to find SDEs for the reparameterized pro-
cesses X̂α(τ) := Xα(t(τ)) and P̂α(τ) = Pα(t(τ)) in Σ.
The heuristic derivation is based on the relation

dBj(t) '
√

dt =
(
P̂ 0

M

)1/2√
dτ '

(
P̂ 0

M

)1/2

dB̂j(τ), (6b)

where B̂j(τ) is a standard Wiener process with time-
parameter τ . The rigorous justification of Eq. (6b) is
given below. Inserting Eqs. (6) in Eqs. (1) one finds

dX̂α(τ) = (P̂α/M) dτ, (7a)
dP̂ i(τ) = Âi dτ + ĈijdB̂

j(τ), (7b)

where Âi := (P̂ 0/M)Ai(X̂0, X̂, P̂ ) and Ĉij :=
(P̂ 0/M)1/2 Cij(X̂

0, X̂, P̂ ). The FPE for the associated
probability density f̂(τ, x0,x,p) reads(

∂

∂τ
+
pα

M

∂

∂xα

)
f̂ =

∂

∂pi

[
−Âif̂ +

1
2
∂

∂pk
(
D̂ikf̂

)]
(8)

where now D̂ik :=
∑
r Ĉ

i
rĈ

k
r . We note that

f̂(τ, x0,x,p) dx0ddxddp gives probability of finding the
particle at proper-time τ in the interval [t, t+dt]×[x,x+
dx]× [p,p + dp] in the inertial frame Σ.
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FIG. 1: ‘Stationary’ probability density function (PDF) of
the absolute momentum |P | measured at time t = 15 (×)
and τ = 15 (◦) from 10000 sample trajectories of the one-
dimensional (d = 1) relativistic Ornstein-Uhlenbeck pro-
cess [13], corresponding to coefficients D(p0) = const and
α(p0) = βD/p0 in Eqs. (1) and (5). Simulation parameters:
dt = 0.001, M = c = β = D = 1.

Remarkably, if the coefficient functions satisfy the con-
straints (5) – so that the stationary solution f∞ of Eq. (4)
is a Jüttner function φJ(p) = Z−1 exp(−βp0) – then
the stationary solution f̂∞ of the corresponding proper-
time FPE (8) is given by a modified Jüttner function
φMJ(p) = Ẑ−1 exp(−βp0)/p0. The latter can be derived
from a relative entropy principle, using a Lorentz invari-
ant reference measure in momentum space [39]. Physi-
cally, the difference between f∞ and f̂∞ is due to the fact
that measurements at t = const and τ = const are non-
equivalent even if τ, t → ∞. This can also be confirmed
by direct numerical simulation of Eqs. (1), see Fig. 1.

Having discussed the proper-time reparameterization,
we next show that a similar reasoning can be applied to
transform the SDEs (1) to a moving frame Σ′ [17].

Lorentz transformations.– Neglecting time-reversals,
we consider a proper Lorentz transformation [28] from
the lab frame Σ to Σ′, mediated by a constant matrix
Λνµ with Λ0

0 > 0, that leaves the metric tensor ηαβ
invariant. We proceed in two steps: First we define

Y ′ν(t) := ΛνµXµ(t) , G′ν(t) := ΛνµPµ(t).

Then we replace t by the coordinate time t′ of Σ′ to obtain
processes X ′α(t′) = Y ′α(t(t′)) and P ′α(t′) = G′α(t(t′)).
Note that dt′(t) = dY ′0(t) = Λ0

µdXµ(t), and, hence,

dt′(t) =
Λ0

µP
µ

P 0
dt =

G′0

P 0
dt =

P ′0(t′(t))
(Λ−1)0

µP
′µ(t′(t))

dt, (9)

where Λ−1 is the inverse Lorentz transformation. Thus,
a similar heuristics as in Eq. (6b) gives

dBj(t) '
√

dt =
(
P 0

P ′0

)1/2√
dt′ '

[
(Λ−1)0

µP
′µ

P ′0

]1/2
dB′j(t′),

where B′j(t′) is a Wiener process with time t′. Further-
more, defining primed coefficient functions in Σ′ by

A′i(x′0,x′,p′) := [(Λ−1)0
µp
′µ/p′0] ×

Λiν A
ν
(
(Λ−1)0

µx
′µ, (Λ−1)iµx

′µ, (Λ−1)iµp
′µ) ,

C ′ij(x
′0,x′,p′) := [(Λ−1)0

µp
′µ/p′0]1/2 ×

Λiν C
ν
j

(
(Λ−1)0

µx
′µ, (Λ−1)iµx

′µ, (Λ−1)iµp
′µ) ,

the particle’s trajectory (X ′(t′),P ′(t′)) in Σ′ is again
governed by a SDE of the standard form

dX ′α(t′) = (P ′α/P ′0) dt′, (11a)
dP ′i(t′) = A′i dt′ + C ′ij dB′j(t′). (11b)

Rigorous justification.– We will now rigorously de-
rive the transformations of SDEs under time changes and
thereby show that the heuristic transformations leading
to Eqs. (7) and (11) are justified; i.e., we are interested
in a time-change t 7→ t̆ of a generic SDE

dY (t) = E dt+ Fj dBj(t), (12a)

where E and Fj will typically be smooth functions of
the state-variables (Y, . . .) [43], and B(t) = (Bj(t)) is a
d-dimensional standard Wiener process [44]. We con-
sider a time-change t 7→ t̆ specified in the form [cf.
Eqs. (6a) and (9)]

dt̆ = H dt, t̆(0) = 0, (12b)

with H being a strictly positive smooth function [45]
of (Y, . . .). The inverse of t̆(t) is denoted by t(t̆). We
would like to show that Eq. (12a) can be rewritten as

dY̆ (t̆) = Ĕ dt̆+ F̆j dB̆j(t̆), (12c)

where Y̆ (t̆) := Y (t(t̆)), Ĕ(t̆) := E(t(t̆))/H(t(t̆)),

F̆ j(t̆) := F j(t(t̆))/
√
H(t(t̆)), and

dB̆j(t̆) :=
√
H dBj(t) (12d)

is a d-dimensional Wiener process with respect to the
new time parameter t̆ [46].

First, we need to prove that Eq. (12d) or, equiva-
lently, B̆j(t̆) :=

∫ t(t̆)
0

√
H(s) dBj(s) does indeed define

a Wiener process. To this end, we note that for fixed
j ∈ {1, . . . , d} the process Lj(t) :=

∫ t
0

√
H(s) dBj(s) is a

continuous local martingale, whose quadratic variation

[Lj , Lj ](t) := lim
n→∞

2n−1∑
k=0

{
Lj
(

(k + 1)t
2n

)
− Lj

(
kt

2n

)}2

is given by [Lj , Lj ](t) =
∫ t

0
H(s)ds [47]. For the

quadratic variation of B̆j(t̆) = Lj(t(t̆)) we then obtain
[B̆j , B̆j ](t̆) = [Lj , Lj ](t(t̆)) =

∫ t(t̆)
0

H(s) ds = t̆. For

i 6= j, we have [B̆j , B̆i](t̆) =
∫ t(t̆)

0
H(s) d[Bj , Bi](s) = 0.

Thus, Lévy’s Theorem [48] implies that B̆(t̆) = (B̆j(t̆)) is
a d-dimensional standard Wiener process. Finally, using
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the definitions of Y̆ , Ĕ, and F̆ j , we find [49]

Y̆ (t̆) =
∫ t(t̆)

0

E(s) ds+
∫ t(t̆)

0

Fj(s) dBj(s)

=
∫ t̆

0

E(t(s̆))
H(t(s̆))

ds̆+
∫ t̆

0

Fj(t(s̆))√
H(t(s̆))

dB̆j(s̆)

=
∫ t̆

0

Ĕ(s̆) ds̆+
∫ t̆

0

F̆j(s̆) dB̆j(s̆), (13)

which is just the SDE (12c) written in integral notation.
Summary.– The above discussion shows how rela-

tivistic Langevin equations of the type (1) can be Lorentz
transformed [17] and reparameterized within a common
framework. The relativistic Langevin theory [13–17] is
now as well-founded and mathematically complete as
the classical theories of nonrelativistic Brownian mo-
tions and deterministic relativistic motions (which are
both included as special limit cases). From a physics
point of view, the most remarkable observation consists
in the fact that the τ -parameterized Brownian motion
converges to a modified Jüttner function [39] if the corre-
sponding t-parameterized process converges to a Jüttner
function [37]. With regard to applications [20, 21] this
means that the correct form of the fluctuation-dissipation
relation depends on the choice of the time-parameter in
the relativistic Langevin equation.
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