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Abstract

For a stochastic factor model we maximize the long term growth rate of
robust expected power utility with parameter λ ∈ (0, 1). Using duality methods
the problem is reformulated as an infinite time horizon, risk-sensitive control
problem. Our results characterize the optimal growth rate, an optimal long
term trading strategy, and an asymptotic worst-case model in terms of an ergodic
Bellman equation. With these results we develop a duality approach to a “robust
large deviations” criterion for optimal long term investment.
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1 Introduction
One of the basic tasks in mathematical finance is to choose an “optimal” payoff among
all available financial positions which are affordable given an initial capital endow-
ment. Any formulation of optimality will involve the investor’s individual preferences
� on the set of financial positions X. The relation X � Y means that the investor
prefers the payoff X over Y . Under mild conditions such preferences admit a numer-
ical representation U : X→ R (see, e. g., [17]), i. e., for X,Y ∈ X it holds that

X � Y ⇐⇒ U(X) > U(Y ).

In this context, Savage [36] clarified the conditions which guarantee that a preference
order admits the specific numerical representation

U(X) = EQ[u(X)] =
∫
u(X(ω))Q(dω), X ∈ X, (1)

in terms of an increasing continuous function u : R → R ∪ {−∞} and a probability
measure Q on (Ω,F). Here Q appears as a “subjective” probability measure which is
implicit in the investor’s preferences, and which may differ from a given “objective”
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probability measure. The function u in (1) will be concave if the investor is assumed
to be risk averse. In that case, u is called a utility function.

The literature on optimal investment decisions in a financial market usually in-
volves the maximization of a utility functional (1) with respect to a given measure
Q. Typically, Q is assumed to model the evolution of future stock prices and is thus
viewed as the “objective” measure. But the price dynamics is not really known ac-
curately, and so the choice of the evaluation measure Q is itself subject to model
uncertainty or model ambiguity, also called Knightian uncertainty in the economic
literature. There is another reason to depart from the standard setting of expected
utility as formulated in (1): Some very plausible preferences such as the famous Ells-
berg paradox are not consistent with (1); see, e. g., [17], Example 2.75. In order to
overcome this limitation, Gilboa and Schmeidler [19] proposed a more flexible set
of axioms for preference orders which leads to a “robust” extension of (1): Instead
of a single measure Q the numerical representation of the preference order involves
a whole class Q of probability measures and takes the form of a “coherent” robust
utility functional

U(X) = inf
Q∈Q

EQ[u(X)]. (2)

This representation suggests the following interpretation: The investor has in mind a
collection of possible probability distributions of market events and takes a worst-case
approach in evaluating the expected utility of a given payoff. In recent years, there
is an increasing interest in the maximization of the robust expected utility (2) of
wealth Xx0,ξ

T attainable at time T > 0 by investing in a financial market using some
self-financing trading strategy ξ and the initial capital x0:

maximize inf
Q∈Q

EQ[u(Xx0,ξ
T )] among all self-financing strategies ξ. (3)

For general semimartingale models, this optimization problem can be solved by a
duality approach (sometimes also called martingale approach); see, e. g., Quenez [35],
Schied and Wu [39], or Föllmer and Gundel [14]. Their results provide a robust ex-
tension of the seminal paper by Kramkov and Schachermayer [27] for the classical
utility maximization problem in incomplete markets. The main advantage of the du-
ality approach lies in the fact that the primal saddle point problem is reduced to a
minimization problem on the dual side. In many cases, the dual problem is much sim-
pler and can be tackled with another optimization technique (dynamic programming,
BSDE).

For a finite maturity, however, the optimal investment strategies for (3) will typi-
cally be time-dependent, and they are often difficult to compute. Instead we propose
an asymptotic approach: We consider a long term investment model with one riskless
and one risky asset whose drift coefficients are affected by an external stochastic factor
process of diffusion type. Our model takes into account ambiguity about the “true”
drift terms of both the factor process and the risky asset. The class Q of possible
prior models corresponds to affine perturbations of the drift terms in a given reference
model and is parameterized by stochastic controls. In this paper we focus on power
utility u(x) = 1

λx
λ with parameter λ ∈ (0, 1), but other utility functions are also

feasible; cf. Remark 2.1. In our model the robust expected power utility will grow
exponentially as time T ↑ ∞, and this suggest to

maximize lim
T↑∞

1
T ln inf

Q∈Q
EQ[(Xx0,ξ

T )λ] among all strategies ξ. (4)

This asymptotic formulation has the advantage of allowing for stationary optimal
policies and may thus be more tractable. On the other hand, the asymptotic Ansatz
provides useful insight for portfolio management with long but finite time horizon.
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For the non-robust case Q = {Q}, problem (4) is closely related to the maximiza-
tion of the portfolio’s risk-sensitized expected growth rate

ΛQ(θ, ξ) := lim
T↑∞
− 2
θT lnEQ[exp(− θ2 lnXx0,ξ

T )], θ 6= 0. (5)

In order to explain the nature of this criterion, let us consider the entropic monetary
utility functional Uθ(X) := − 2

θ lnEQ[exp(− θ2X)], where θ is a positive constant. The
functional Uθ is also well-defined for θ < 0, and it can be extended to θ = 0 via
U0(X) := limθ→0 Uθ(X) = EQ[X]. A Taylor expansion around θ = 0 (cf., e. g., [41],
p. 5) yields

Uθ(X) = EQ[X] + θ
4 VarQ[X] +O(θ2). (6)

Thus θ can be interpreted as a “risk sensitivity” parameter that weights the impact
of variance. In particular, the Taylor expansion (6) suggests that

ΛQ(θ, ξ) = lim
T↑∞

1
T EQ[lnXx0,ξ

T ] + θ
4 lim
T↑∞

1
T VarQ[lnXx0,ξ

T ].

The first term at the right-hand side is the portfolio’s risk-neutral expected growth rate.
The second term provides a risk adjustment specified by the portfolio’s asymptotic
variance and the risk sensitivity parameter θ, and so ΛQ(θ, ξ) can indeed be seen
as the risk-sensitized expected growth rate of wealth. On the other hand, the long
run growth rates of expected power utility u(x) = (θ/2)xθ/2 are, up to constants, of
the form ΛQ(θ, ξ), and the limit θ → 0 corresponds to the growth rate of expected
logarithmic utility. Such risk-sensitized portfolio optimization problems on an infinite
time horizon have received much attention; see, e. g., [9], [10], [3], [4], [33], [31],
[28]. In those papers, the maximization of (5) among a class of trading strategies,
viewed as dynamic controls, is reformulated as an infinite time horizon, risk-sensitive
control problem of the kind studied in Fleming and McEneaney [8]. The rewritten
problem leads to an auxiliary finite horizon “exponential of integral criterion”. This
is a standard problem in stochastic control theory, and its value function can be
described by an appropriate Hamilton-Jacobi-Bellman (HJB) equation. As time tends
to infinity, a heuristic separation of time and space variables in the HJB equation
yields an ergodic Bellman equation. The optimal growth rate and an optimal trading
strategy is characterized by a specific solution of this ergodic Bellman equation.

In contrast to (5), our robust problem (4) involves also the minimization among
the class Q, and this would lead to a stochastic differential game on an infinite time
horizon. Our main purpose, however, is to develop an alternative approach: The
main idea consists in combining the duality approach in [39] with methods from risk-
sensitive control. Our main results characterize the optimal growth rate

Λ(λ) := sup
π∈A

lim
T↑∞

1
T ln inf

Q∈Q
EQ[(Xx0,ξ

T )λ],

an optimal long term investment strategy, and an asymptotic worst-case model Q∗ ∈
Q for robust expected power utility in terms of an appropriate ergodic Bellman equa-
tion.

Such asymptotic results on robust utility maximization are not only of intrinsic
interest but also relevant in connection to “robust large deviations” criteria to optimal
long term investment. Suppose that the investor takes into account a class Q of prior
models and wants to maximize the worst-case probability that the portfolio’s growth
rate Lx0,ξ

T := 1
T lnXx0,ξ

T exceeds some threshold c ∈ R. In the spirit of large deviations
theory (see, e. g., [6]) the asymptotic problem then consists in

maximizing lim
T↑∞

1
T ln inf

Q∈Q
Q[Lx0,ξ

T ≥ c] among all ξ. (7)
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The solution can be derived by a duality approach similar to the Gärtner-Ellis theo-
rem, but here the dual problem involves the optimal growth rates Λ(λ), λ ∈ (0, 1), of
robust expected power utility.

The paper is organized as follows: The setup is introduced in Section 2. Section
3 contains a heuristic derivation of our main results that are verified in Section 4.
In Section 5 we discuss the existence of a solution to our ergodic Bellman equation.
Explicit case studies are given in Section 6. In Section 7 we describe the duality
approach to the robust outperformance criterion (7).

2 The model and problem formulation

Let (Ω,F , (Ft)t≥0, Q0) be the canonical path space of a two-dimensional Wiener pro-
cessW = (W 1

t ,W
2
t )t≥0. We shall consider a long term horizon investment model with

one locally riskless asset S0 and one risky asset S1. The performance of the market
is determined by an external “economic factor” Y , driven by the Wiener process W .
The spectrum of possible factors includes dividend yields, short-term interest rates,
price-earning ratios, yields on various bonds, the rate of inflation, etc.. Both the price
processes S0, S1 and the factor process Y will be subject to model ambiguity. This
will be described by a class Q of probabilistic models, viewed as perturbations of the
following reference model Q0. Under Q0 the dynamics of the locally riskless asset is
given by

dS0
t = S0

t r(Yt) dt, S0
0 = 1,

and the price process of the risky asset is governed by the SDE

dS1
t = S1

t (m(Yt) dt+ σ dW 1
t ). (8)

Thus the market price of risk is defined by

θ(y) := m(y)−r(y)
σ . (9)

The factor process evolves according to

dYt = g(Yt) dt+ ρ dWt = g(Yt) dt+ ρ1 dW
1
t + ρ2 dW

2
t . (10)

We suppose that the economic factor can be observed but cannot be traded directly.
Therefore the market model is typically incomplete. This class of market models is
widely used in mathematical finance and economics; see, e. g., [18], [7], [5], and the
references therein. Typically the diffusion Y is also assumed to be mean reverting
and ergodic with some invariant distribution µ. A special example is the Ornstein-
Uhlenbeck (OU) process with dynamics

dYt = η0(y − Yt) dt+ σ dW 1
t , η0 > 0, σ 6= 0, (11)

and invariant distribution µ = N(y, σ
2

2η0
).

We shall use the following general assumptions on the coefficients of the diffusions,
summarized as

Assumption 2.1. The functions g, m admit derivatives gy,my ∈ C1
b (R), and r

belongs to C2
b (R), where Ckb (R) denotes the class of all bounded functions with bounded

derivatives up to order k. Moreover, we assume that σ and ‖ρ‖ are positive and that
the short rate function r is bounded below by some constant a1 > 0.
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Here we use ‖ · ‖ to indicate the Euclidian norm in R2, and in the sequel (·, ·) will
denote the corresponding inner product. In particular, our assumptions ensure that
the functions g and θ satisfy the linear growth conditions

|g(y)| ≤ a2(1 + |y|) and |θ(y)| ≤ a3|y|+ a4 for a2, a3, a4 > 0.

Note also that Assumption 2.1 is consistent with linear drift functions g and m. In
this paper, such a choice of the reference model will be particularly useful to obtain
explicit solutions; cf. Section 6.

In reality, however, the “true” price dynamics is not really known exactly. Here we
focus on model uncertainty with respect to the drift terms appearing in (8) and (10).
More precisely, we consider the parameterized class of possible probabilistic models

Q := {Qη|η = (ηt)t≥0 ∈ C},

on (Ω,F), where C denotes the set of all progressively measurable processes η =
(ηt)t≥0 such that ηt = (η11

t , η
12
t , η

21
t , η

22
t ) belongs dt⊗Q0-a. e. to some fixed compact

and convex set Γ ⊂ R4 which contains the origin. For η ∈ C and any fixed horizon T ,
the restriction of Qη to the σ-field FT is given by the Radon-Nikodým density

Dη
T := dQη

dQ0

∣∣
FT

:= E(
∫ ·

0

η1·
t Yt + η2·

t dWt)T (12)

with respect to the reference measure Q0. Here E(·) denotes the Itô exponential.
To see that Dη

T is indeed the density of a probability measure on (Ω,FT ), we can
argue as follows: By Assumption 2.1 the diffusion process Y satisfies the regular-
ity conditions required in Lemma 8.1, and so there exists some δ > 0 such that
sup0≤t≤T EQ0 [exp(δY 2

t )] <∞. The compactness of Γ thus ensures that

sup
0≤t≤T

EQ0 [exp(ε‖η1·
t Yt + η2·

t ‖2)] <∞ (13)

as soon as ε > 0 is chosen sufficiently small. According to [29], Example 3, Subsection
6.2, this yields EQ0 [Dη

T ] = 1 as desired.
In view of (12) we have Q0 = Q0 ∈ Q, and it follows as in [23], Lemma 3.1, that

Q is a convex set of locally equivalent measures on (Ω,F). By Girsanov’s theorem,

W η
t := (W 1

t −
∫ t

0

η11
s Ys + η21

s ds,W 2
t −

∫ t

0

η12
s Ys + η22

s ds), t ≥ 0,

is a two-dimensional Wiener process under the measure Qη, and the dynamics of S1,
Y under Qη takes the form

dYt = [g(Yt) + (ρ, η1·
t Yt + η2·

t )] dt+ ρ dW η
t , (14a)

dS1
t = S1

t ([m(Yt) + σ(η11
t Yt + η21

t )] dt+ σ dW 1,η
t . (14b)

Roughly speaking each element of Q corresponds to an affine perturbation of the
drifts in our reference model Q0. In particular, our “robust” market model includes
the following special cases (see Section 6):

Example 2.1. Black-Scholes model with uncertain drift:

r(y) ≡ r, m(y) ≡ m, Γ = {(0, 0)} × [a, b]× {0}
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Example 2.2. Geometric OU model with uncertain mean reversion:
The factor process Y is an OU process under Q0 with rate of mean reversion η0 > 0,
mean reversion level y = 0 and volatility σ > 0; cf. (11). We also assume S0

t =
exp(rt), r > 0, and S1

t := exp(Yt + αt), α ∈ R. By Itô’s formula this corresponds to

g(y) = −η0y, ρ1 = σ, ρ2 = 0, m(y) = −η0y + 1
2σ

2 + α.

Moreover, we take the set Γ := [η0−bσ , η0−aσ ]× {(0, 0, 0)} for 0 < a ≤ b <∞. For any
Qη ∈ Q the process Y thus follows under Qη ∈ Q an OU type dynamics with mean
reversion process η0 − ση11

t taking values in [a, b].

Let us now formulate our main problem. We consider an investor with initial
capital x0 > 0 who aims at optimizing his portfolio in the long run. A trading
strategy will be a predictable stochastic process ξ = (ξ0, ξ1) whose components ξ0

and ξ1 describe the successive amounts invested into the bond and into the risky
asset. The value of such a portfolio at time t is given by Xξ

t = ξ0
t S

0
t + ξ1

t S
1
t . We also

assume that ξ1 is S1-integrable. Such a trading strategy ξ is said to be self-financing
for the given initial capital x0 if its wealth process Xξ = (Xξ

t )t≥0 takes the form

Xξ
t = x0 +

∫ t

0

ξ0
u dS

0
u +

∫ t

0

ξ1
u dS

1
u. (15)

Here the (stochastic) integrals can be interpreted as cumulative gains or losses, i. e.,
any change in the portfolio value equals the profit or loss due to changes in the asset
prices. For notational convenience we omit the explicit dependence of Xξ on the
initial capital x0, since it will be irrelevant for our purpose of long term investment.

Definition 2.1. A self-financing trading strategy ξ is called T -admissible if Xξ
t ≥ 0

for all t ∈ [0, T ]. A strategy ξ will be called admissible if it is T -admissible for any
time horizon T > 0. We denote by AT the class of all T -admissible strategies and by
A the class of all admissible strategies.

Clearly, a self-financing trading strategy ξ can also be described by the fractions

πt := ξ1tS
1
t

Xξt
, t ≥ 0,

of the current wealth which should be invested into the risky asset. Throughout this
paper we identify a strategy ξ with the fractions π = (πt)t≥0. In terms of π the wealth
process defined in (15) takes the form

Xπ
t = x0 +

∫ t

0

Xπu (1−πu)
S0
u

dS0
u +

∫ t

0

Xπuπu
S1
u

dS1
u

i. e., the investor’s wealth Xπ evolves according to the SDE

dXπ
t = Xπ

t ((1− πt)dS
0
t

S0
t

+ πt
dS1
t

S1
t

)

= Xπ
t (r(Yt) dt+ πtσ[(θ(Yt) + η11

t Yt + η21
t ) dt+ dW 1,η

t ]) (16)

with initial condition Xπ
0 = x0.

In order to specify optimality, we assume that the investor’s preferences in the
face of model ambiguity are specified by a power utility function

u(x) = 1
λx

λ with risk aversion parameter λ ∈ (0, 1),
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and the set of prior probabilistic models Q; cf. page 2. For a finite maturity T , his
robust portfolio selection problem then consists in

maximizing inf
Qη∈Q

EQη [u(Xπ
T )] among all π ∈ AT . (17)

In a general semimartingale setting, this problem is well understood from a theoretical
point of view, in particular due to the articles [35], [39], [14]. For robust market
models of the diffusion type described above and for power utility, problem (17) has
been discussed recently by Schied [38]. Applying dynamic programming methods to
the dual problem, he determines the maximal robust expected utility and a worst-
case model in terms of a Hamilton-Jacobi-Bellman equation. Here we do not limit
the analysis to a fixed maturity. Instead the objective of our investor consists in
maximizing the long term growth of robust expected power utility. A priori estimates,
as established in Lemma 3.1, suggest that the maximal values

UQT (x0) := sup
π∈AT

EQ[u(Xπ
T )], UT (x0) := sup

π∈AT
inf
Qη∈Q

EQη [u(Xπ
T )] (18)

for the classical utility maximization problem under Q and for its robust extension
will grow exponentially as T ↑ ∞. Thus it is natural to try to

maximize lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ

T )λ] among all π ∈A. (19)

Our goal is to identify the optimal growth rate

Λ(λ) := sup
π∈A

lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ

T )λ], λ ∈ (0, 1), (20)

an optimal long term investment strategy π∗, and an asymptotic worst-case model
Qη
∗ ∈ Q. Heuristically this means that, as T ↑ ∞,

UT (x0) ≈ 1
λx

λ
0e

Λ(λ)T (21)

≈ inf
Qη∈Q

EQη [u(Xπ∗

T )] (22)

≈ UQ
η∗

T (x0) = sup
π∈AT

EQη∗ [u(Xπ
T )] (23)

≈ EQη∗ [u(Xπ∗

T )]. (24)

Here (22) corresponds to asymptotic optimality of the trading strategy π∗, (23) to
the property of Qη

∗
of being the asymptotic worst-case model, and (24) identifies π∗

also as the asymptotically optimal strategy for the model Qη
∗
. In particular, Qη

∗

and π∗ can be viewed as a saddle point for the problem of asymptotic robust utility
maximization with control parameters η ∈ C and π ∈ A. Moreover, (22) suggests
that an optimal strategy π∗ of the asymptotic criterion (19) should provide a good
approximation of an optimal investment process π∗,T for the robust power utility
maximization problem with a large but finite time horizon T .

Remark 2.1. The asymptotic approach to robust utility maximization can be extended
to the following cases (see [26], Chapter 4):

• For power utility u(x) = 1
λx

λ with parameter λ < 0 the distance between

UT (x0) = 1
λ inf
π∈AT

sup
Qη∈Q

EQη [(Xπ
T )λ]
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and its upper bound 0 will typically decrease exponentially. This suggests to
compute the optimal growth rate

Λ(λ) := inf
π∈A

lim
T↑∞

1
T ln sup

Qη∈Q
EQη [(Xπ

T )λ].

• For logarithmic utility u(x) = ln(x) the growth of robust expected utility will be
linear. Thus we want to

maximize lim
T↑∞

1
T inf
Qη∈Q

EQη [ln(Xπ
T )] among all π ∈ A.

3 Heuristic outline of the dynamic programming
approach

We start with a heuristic derivation of our main results. They provide a characteriza-
tion of the optimal growth rate Λ(λ), of an asymptotic worst-case model Qη

∗
, and of

an optimal long term investment strategy π∗ in terms of an ergodic Bellman equation
(EBE). Our method combines the duality approach to robust utility maximization
with dynamic programming methods for a varying time horizon. As a byproduct of
the duality approach, we also show that UT (x0) grows exponentially at rate Λ(λ) as
T ↑ ∞. A more direct, but not more tractable approach to the saddle-point problem
(19) via stochastic differential games will be discussed in Remark 4.2.

First, we setup the duality approach based on the results of Schied and Wu [39]
for a utility function u on the positive halfline. This will allow us to transform the
primal saddle-point problem (19) to a simpler minimization problem on the dual side.
The dual value function at time T is defined by

VT (y) := inf
Q∈Q

inf
Y ∈YQ

EQ[v(yYT /S0
T )], y > 0, (25)

where v(y) := supx>0{u(x)− xy}, y > 0, is the convex conjugate function of u. This
definition also involves the class of supermartingales

YQT := {Y ≥ 0|Y0 = 1 & ∀π ∈ AT : (YtXπ
t /S

0
t )t≤T is a Q-supermartingale},

as introduced by Kramkov and Schachermayer [27]. Note that YQT contains the density
processes (taken with respect to Q and the numéraire S0) of the class PT of all
equivalent local martingale measures on (Ω,FT ). For power utility we have v(y) =
−β−1yβ , β := λ

λ−1 , and this yields the scaling property VT (y) = yβVT (1). Due to
[39], Theorem 2.2, the primal value function (18) can then be obtained as

UT (x0) = inf
y>0
{VT (y) + x0y} = 1

λx
λ
0 (−βVT (1))1−λ. (26)

Since power utility has asymptotic elasticity limx↑∞
xu′(x)
u(x) < 1, it follows from [39],

Theorem 2.5, also that

VT (1) = inf
P∈PT

inf
Q∈Q

EQ[v( dPdQ |FT /S
0
T )]. (27)

We now parameterize the sets YQT and PT . Since Zt := dP/dQ0|Ft , t ≤ T , is a
positive Q0-martingale for any P ∈ PT , the martingale representation theorem yields
the existence of an R2-valued progressively measurable process φ = (φ1, φ2) with

8



∫ T
0
‖φs‖2 ds < ∞ Q0-a. s. such that Zt = E(

∫ ·
0
φs dWs)t. By Girsanov’s theorem,

the discounted wealth process Xπ/S0 is a local martingale under P if and only if
φ1
s = −θ(Ys) ds ⊗ Q0-a. e.. Thus the Q0-density process of an martingale measure
P ∈ PT necessarily takes the form

Zνt := E(−
∫ ·

0

θ(Ys) dW 1
s −

∫ ·
0

νs dW
2
s )t (28)

for some progressively measurable process ν such that
∫ T

0
ν2
s ds < ∞ Q0-a. s.. Con-

versely, ZνT corresponds to the Q0-density of an equivalent local martingale measure
on (Ω,FT ) as soon as the martingale condition EQ0 [ZνT ] = 1 holds. This can verified
if, for instance, the process ν is assumed to be bounded. Thus our market model
admits a variety of equivalent local martingale measures up to any finite horizon T ,
i. e., the restriction of our model to a finite horizon is arbitrage-free but incomplete.

More generally, we will denote byM the set of all progressively measurable pro-
cesses ν = (νt)t≥0 such that

∫ T
0
ν2
t dt < ∞ Q0-a. s. for all T > 0. Via (28) every

ν ∈M gives rise to a positive Q0-supermartingale Zν . Using Itô’s formula one easily
shows that (Dη)−1ZνXπ/S0 is a positive local martingale under Qη for any ν ∈ M
and π ∈ AT , and hence a Qη-supermartingale. Thus,

{( dP
dQη

∣∣
Ft

)t≤T |P ∈ PT } ⊂ {((Dη
t )−1Zνt )t≤T |ν ∈M} ⊂ YQ

η

T .

In view of (25), (27) and (26) this inclusion and a change of measure yield

UT (x0) = 1
λx

λ
0 ( inf
ν∈M

inf
η∈C

EQ0 [(ZνT (S0
T )−1)

λ
λ−1 (Dη

T )
1

1−λ ])1−λ. (29)

In a second step, we derive an ergodic Bellman equation by applying dynamic pro-
gramming methods to the dual minimization problem. Since ZνT , D

η
T , and the bond

price S0
T depend on the factor process Y , the expectation at the right-hand side of

(29) is a function of the initial state Y0 = y. For all processes η ∈ C and ν ∈ M we
can thus define

V (η, ν, y, T ) := EQ0 [(ZνT (S0
T )−1)

λ
λ−1 (Dη

T )
1

1−λ ]. (30)

Inserting the definitions of ZνT , D
η
T and S0

T we then obtain the decomposition

V (η, ν, y, T ) = EQ0 [Eη,νT e
R T
0 l(ηt,νt,Yt) dt]. (31)

Here the function l : Γ× R× R→ R+ is defined by

l(η, ν, y) := 1
2

λ
(1−λ)2 [(θ(y) + η11y + η21)2 + (ν + η12y + η22)2] + λ

1−λr(y) (32)

and

Eη,νT := E( 1
1−λ (

∫ ·
0

λθ(Yt) + η11
t Yt + η21

t dW 1
t +

∫ ·
0

λνt + η12
t Yt + η22

t dW 2
t ))T .

To simplify the expression for V (η, ν, y, T ), we shall interpret the Itô exponential as
the density of a probability measure Rη,ν on (Ω,FT ). This requires EQ0 [Eη,νT ] = 1
which is satisfied, for example, if

∫ T
0
ν2
t dt is bounded. For arbitrary ν ∈ M we may

have EQ0 [Eη,νT ] < 1, but here we argue heuristically, and so we postpone this technical
problem to the proof of Theorem 4.1. In terms of the measure Rη,ν we can write

V (η, ν, y, T ) = ERη,ν [e
R T
0 l(ηt,νt,Yt) dt]. (33)
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Moreover, Girsanov’s theorem yields that the factor process (Yt)t≤T evolves under
Rη,ν according to the SDE

dYt = h(ηt, νt, Yt) dt+ ρ dW η,ν
t , (34)

where W η,ν is a Wiener process under Rη,ν , and where h is defined by

h(η, ν, y) := g(y) + 1
1−λρ1(λθ(y) + η11y + η21)

+ 1
1−λρ2(λν + η12y + η22). (35)

Putting (29), (30) and (33) together, we get

UT (x0) = 1
λx

λ
0v(y, T )1−λ, (36)

where
v(y, T ) := inf

ν∈M
inf
η∈C

ERη,ν [e
R T
0 l(ηt,νt,Yt) dt]

denotes the value function of the finite horizon optimization problem on the dual side
of (29). Such an “expected exponential of integral cost criterion” with a dynamics of
the form (34) is standard in stochastic control theory; see, e. g., [11], Remark IV.3.3.
As a result, v can be described as the solution to the Hamilton-Jacobi-Bellman (HJB)
equation

vt = 1
2‖ρ‖

2vyy + inf
ν∈R

inf
η∈Γ
{l(η, ν, ·)v + h(η, ν, ·)vy}, v(·, 0) ≡ 1. (37)

The following lemma establishes a priori bounds for the exponential growth of
robust expected power utility, and this justifies the scaling in (19):

Lemma 3.1. Suppose in addition to Assumption 2.1 that one of the following con-
ditions is satisfied:

(1) The market price of risk function θ in (9) is bounded.

(2) There exist constants K,M1,M2 > 0 such that

−Ky +M1 ≤ g(y) + λ
1−λρ1θ(y) ≤ −Ky +M2, 2 λ

(1−λ)2 ‖ρ‖
2a2

3 < K2.

Then there are constants K1,K2 > 0 such that for any initial capital x0 > 0

K1 ≤ lim
T↑∞

1
T lnUT (x0) ≤ lim

T↑∞
1
T lnUT (x0) ≤ K2. (38)

Proof. If at any time the whole capital is put into the money market account, then the
investor’s utility at time T is given by 1

λx
λ
0 exp(λ

∫ T
0
r(Yt) dt) which, by Assumption

2.1, is bounded from below by 1
λx

λ
0 exp(λa1T ). This implies the lower bound

0 < K1 := λa1 ≤ lim
T↑∞

1
T lnUT (x0).

To obtain the upper bound, observe first that

v(y, T ) ≤ V (0, 0, y, T ) ≤ ER[e
1
2

λ
(1−λ)2

R T
0 θ2(Yt) dt]e

λ
1−λ‖r‖∞T ,

where R := R0,0 is the probability measure defined by E0,0
T . In view of (36) we thus

get the estimate

lim
T↑∞

1
T lnUT (x0) ≤ (1− λ) lim

T↑∞
1
T lnER[e

1
2

λ
(1−λ)2

R T
0 θ2(Yt) dt] + λ‖r‖∞. (39)
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In particular, the upper bound in (38) holds with K2 := 1
2

λ
1−λ‖θ‖

2
∞ + λ‖r‖∞ if the

market price of risk function θ is bounded.
Case (2) requires more effort. By (39) it is sufficient to show that

lim
T↑∞

1
T lnER[exp( 1

2
λ

(1−λ)2

∫ T

0

θ2(Yt) dt)] <∞. (40)

To this end, recall from (34) that the dynamics of Y under R is given by

dYt = h(0, 0, Yt) dt+ ρ dW 0,0
t with h(0, 0, y) = g(y) + λ

1−λρ1θ(y).

Consider now the R-OU processes dZit = [−KZit+Mi] dt+ρ dW
0,0
t , Zi0 = y, i = 1, 2.

Then a comparison argument for the solutions of SDE’s ensures that

R[Z1t ≤ Yt ≤ Z2t for all t ≥ 0] = 1. (41)

Take now ε > 0 satisfying 2 λ
(1−λ)2 ‖ρ‖

2(a2
3 + ε) < K2. By Assumption 2.1 there exist

constants C1, C2 depending on ε such that

θ2(y) ≤ (a3|y|+ a4)2 ≤ (a2
3 + ε

2 )y2 + C1 ≤ (a2
3 + ε)(y −Mi/K)2 + C1 + C2

for any y ∈ R. Together with (41) and Hölder’s inequality (applied in line 3) this
leads to

ER[e
1
2

λ
(1−λ)2

R T
0 θ2(Yt) dt] ≤ ER[e

1
2

λ
(1−λ)2 (a2

3+
ε
2 )

R T
0 Y 2

t dt]e
1
2

λ
(1−λ)2C1T

≤ ER[e
1
2

λ
(1−λ)2 (a2

3+
ε
2 )

R T
0 Z2

1t+Z
2
2t dt]eC3T

≤ maxi=1,2ER[e
λ

(1−λ)2 (a2
3+

ε
2 )

R T
0 Z2

it dt]eC3T

≤ maxi=1,2ER[e
λ

(1−λ)2 (a2
3+ε)

R T
0 (Zit−Mi/K)2 dt

]eC4T

= maxi=1,2ER[e
λ

(1−λ)2 ‖ρ‖
2(a2

3+ε)
R T
0

eZ2
it dt]eC4T (42)

Here we use the processes Z̃i, i = 1, 2, defined by Z̃it := ‖ρ‖−1(Zit −Mi/K). Note
that Z̃i is an OU process with rate of mean reversion K, equilibrium level 0, and
volatility 1, since B :=

∫
0
(‖ρ‖)−1ρ dW 0,0

t is a standard one-dimensional R-Brownian
motion, due to P. Lévy’s characterization. Applying Lemma 4.2 in [13] (here with
λ = 0, µ = λ

(1−λ)2 ‖ρ‖
2(a2

3 + ε) and θ0 = −K) for the asymptotics of the Laplace
transform of the energy integral of a normalized OU process, we obtain

lim
T↑∞

1
T lnER[e

λ
(1−λ)2 ‖ρ‖

2(a2
3+ε)

R T
0

eZ2
it dt]= 1

2 (K−
√
K2−2 λ

(1−λ)2 ‖ρ‖2(a2
3 + ε)).

In view of (42) we have thus shown (40). This completes the proof.

Combining the discussion of (21) with (36), it is natural to expect that the optimal
growth rate Λ(λ) in (20) satisfies

Λ(λ) = lim
T↑∞

1
T lnUT (x0) = lim

T↑∞
1
T ln(v(y, T )1−λ).

As in Fleming and McEneaney [8] we now use a formal separation of time and space
variables and formulate the heuristic Ansatz

(1− λ) ln v(y, T ) = lnUT (x0) ≈ Λ(λ)T + ϕ(y). (43)
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Here the function ϕ : R → R incorporates the influence of the initial state Y0 = y.
Inserting this Ansatz into the HJB equation (37), we obtain a steady-state dynamic
programming equation for the pair (Λ(λ), ϕ):

Λ(λ) = 1
2‖ρ‖

2[ϕyy + 1
1−λϕ

2
y] + inf

ν∈R
inf
η∈Γ
{(1− λ)l(η, ν, ·) + ϕyh(η, ν, ·)} (44)

An equation of this type is called ergodic Bellman equation (EBE); see, e. g., [1], [25],
[30], and the references therein. For fixed η ∈ Γ the minimizer ν∗(η, y) among all
ν ∈ R can be computed explicitly as

ν∗(η, y) = −η12y − η22 − ρ2ϕy(y). (45)

Thus the EBE (44) can be rewritten in condensed form that involves only an infimum
among the set Γ. Let us now assume that our EBE (44) admits a solution Λ(λ) ∈ R+,
ϕ ∈ C2(R). In addition, assume that η∗(y) is a minimizer in (44), and let Qη

∗ ∈ Q
be the probabilistic model corresponding to the feedback control η∗t = η∗(Yt). We
are now going to give a heuristic argument to identify a candidate for the optimal
long run investment process π∗. To this end, we suppose that the measure Qη

∗
is a

worst-case model in the asymptotic sense that

Λ(λ) = lim
T↑∞

1
T lnUT (x0) = lim

T↑∞
1
T ln sup

π∈AT
EQη∗ [(Xπ

T )λ]. (46)

Later on we will show that this assumption is indeed justified. We are now going
to introduce a change of measure which will allow us to interpret the finite time
maximization problem at the right-hand side of (46) as an exponential of integral
criterion. For this purpose, note that an optimal wealth process should stay positive,
and this suggests to focus on those strategies π ∈ A, where the unique strong solution
to (16) takes the form

Xπ
t = x0e

R t
0 πuσ dW

1,η∗
u +

R t
0 r(Yu)+σπu(θ(Yu)+η11,∗

u Yu+η21,∗
u )− 1

2σ
2π2
u du.

In this case the expectation at the right-hand side of (46) can be rewritten as

EQη∗ [(Xπ
T )λ] = xλ0ERπ,η∗ [e

R T
0

el(πt,η∗(Yt),Yt) dt].
Here we use the notation

l̃(π, η, y) := 1
2λ(λ− 1)σ2π2 + λσ[θ(y) + η11y + η21]π + λr(y), (47)

and Rπ,η denotes the probability measure on (Ω,FT ) defined by

dRπ,η

dQη

∣∣
FT

:= E(
∫ ·

0

λπtσ dW
1,η
t )T . (48)

By Girsanov’s theorem, the dynamics of (Yt)t≤T under Rπ,η is described by

dYt = h̃(πt, ηt, Yt) dt+ ρ dWπ,η
t (49)

in terms of the function h̃ defined by

h̃(π, η, y) := g(y) + (ρ, η1·y + η2·) + λρ1σπ (50)

and the one-dimensional Wiener process Wπ,η. We have thus shown that the finite
horizon maximization problem appearing in the right-hand side of (46) can be viewed
as a finite horizon control problem with value function

ṽ(y, T ) := sup
π∈A

EQη∗ [(Xπ
T )λ] = xλ0 sup

π∈A
ERπ,η∗ [e

R T
0

el(πt,η∗(Yt),Yt) dt]

12



and with dynamics (49). In analogy to (37), we expect that ṽ is the solution to the
HJB equation

ṽt = 1
2‖ρ‖

2ṽyy + sup
π∈R
{l̃(π, η∗, ·)ṽ + h̃(π, η∗, ·)ṽy}, ṽ(·, 0) ≡ 1. (51)

Our Ansatz (43) combined with (46) for the worst-case measure Qη
∗
now suggests the

heuristic separation of variables ln ṽ(y, T ) ≈ Λ(λ)T +ϕ(y). Inserting this asymptotic
identity into (51), we finally obtain an alternative version of the EBE:

Λ(λ) = 1
2‖ρ‖

2[ϕyy + ϕ2
y] + sup

π∈R
{l̃(π, η∗, ·) + ϕyh̃(π, η∗, ·)}. (52)

Note that the role played by the controls η and ν in (44) is now taken over by the
“trading strategies” π. We expect that the maximizing function

π∗(y) = 1
1−λ

1
σ (ρ1ϕy(y) + θ(y) + η11,∗(y)y + η12,∗(y)). (53)

in (52) provides an optimal feedback control π∗t = π∗(Yt), t ≥ 0, for the asymptotic
maximization of power utility with respect to the specific model Qη

∗
and at the same

time for the original robust problem (19).

4 Verification theorems

In this section we verify our heuristic results. For this purpose, we first return to the
heuristic change of measure in (33) which is crucial to translate the dual problem (29)
into a standard “exponential of integral criterion”. From the technical point of view
this requires the condition EQ0 [Eη,νT ] = 1 that can be violated if the supermartingale
Zν is not a true Q0-martingale. This fact will create some technical difficulties. To
overcome this obstacle, we shall employ a localization argument.

Lemma 4.1. Let η ∈ C and ν ∈ M be arbitrary controls, and suppose that (τn)n∈N
is a localizing sequence of stopping times for the local Q0-martingale Zν . Then
V (η, ν, y, T ∧ τn) ↗ V (η, ν, y, T ) as n ↑ ∞, and the integrands in (30) even con-
verge in L1(Q0) if V (η, ν, y, T ) <∞.

Proof. The proof is given in [38], Lemma 3.2. The main idea consists in applying the
concept of extended martingale measures introduced in [14].

In a second step we are going to show that the value Λ̃(λ) given by a specific
solution to the EBE (44) is actually the exponential growth rate of the maximal
robust power utility UT (x0). For this purpose, we need

Assumption 4.1. Suppose that Λ̃(λ) ∈ R+, ϕ ∈ C2(R) is a solution to

Λ̃(λ) = 1
2‖ρ‖

2[ϕyy + 1
1−λϕ

2
y] + inf

ν∈R
inf
η∈Γ
{(1− λ)l(η, ν, ·) + ϕyh(η, ν, ·)} (54)

which fulfills the following regularity conditions:

(a) Either the first derivative ϕy is bounded or ϕ is bounded below and its derivative
ϕy has at most linear growth, i. e.,

|ϕy(y)| ≤ C1(1 + |y|) for some constant C1 > 0.
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(b) There exist C2, C3 > 0 such that yκ(η, y) ≤ −C2y
2 + C3, where

κ(η, y) := g(y) + λ
1−λρ1(θ(y) + η11y + η21)

+ (ρ, η1·y + η2·) + [ 1
1−λρ

2
1 + ρ2

2]ϕy(y). (55)

In full generality, we are unfortunately not able to clarify whether the EBE (54)
has such a solution (Λ̃(λ), ϕ). In Subsection 5 we are going to state sufficient (but
rather restrictive) conditions under which the existence of a solution to our EBE (54)
is already known. Moreover, Section 6 contains two case studies with linear drift
coefficients, where the solution can be derived even explicitly. But as illustrated in
Subsection 6.2 in case of the geometric OU model, there may exist multiple such
pairs (Λ̃(λ), ϕ), even beyond the fact that ϕ is determined only except for an additive
constant. However, the verification theorems will require a certain “uniform ergodicity
condition” such as Assumption 4.1 (b) for the diffusion Y , and this condition selects
the “good candidate” for the optimal growth rate Λ(λ); cf. Remark 6.2.

Theorem 4.1. If Assumption 4.1 is satisfied, then we get the identity

Λ̃(λ) = lim
T↑∞

1
T ln( inf

ν∈M
inf
η∈C

V (η, ν, y0, T )1−λ) for any Y0 = y0. (56)

Moreover, the infima at the right-hand side are attained for feedback controls

η∗t := η∗(Yt), ν∗t := ν∗(Yt), t ≥ 0, (57)

defined in terms of a measurable Γ-valued function η∗ and the function

ν∗(y) := ν∗(η∗(y), y) = −η12,∗(y)y − η22,∗(y)− ρ2ϕy(y)

such that the infima in (54) are realized. Thus,

Λ̃(λ) = lim
T↑∞

1
T ln(V (η∗, ν∗, y0, T )1−λ). (58)

In particular, the duality relations for robust utility maximization yield that

Λ̃(λ) = lim
T↑∞

1
T lnUT (x0) = lim

T↑∞
1
T lnUQ

η∗

T (x0) for any Xπ
0 = x0. (59)

Remark 4.1. In view of (59), Qη
∗
can be seen as the asymptotic worst-case measure

for robust expected power utility with parameter λ ∈ (0, 1). On the other hand, the
probability measure P ν

∗
on (Ω,F) with Radon-Nikodým density process (Zν

∗

t )t≥0 is a
martingale measure which is equivalent to Q0 on each σ-algebra Ft, t > 0. In view of
(58) and the duality relation (26) it can be interpreted as the asymptotic worst-case
martingale measure.

Proof. 1) In order to show that the constant Λ̃(λ) given by the specific solution
(Λ̃(λ), ϕ) to the EBE (54) coincides with the exponential growth rate of the maximal
robust power utility, we first prove that Λ̃(λ) provides a lower bound for the growth
rate. To this end, we use the duality relation

UT (x0) = 1
λx

λ
0 inf
ν∈M

inf
η∈C

V (η, ν, y, T )1−λ

(cf. (29)) with V introduced in (30), derive suitable lower bounds for any fixed horizon
T , and then pass to the limit.
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Let η ∈ C, ν ∈ M be fixed controls, and let T be a given maturity. Then
τn := inf{t ≥ 0| |Yt| ≥ n or

∫ t
0
ν2
s ds ≥ n} ∧ T , n ∈ N, is a localizing sequence for

the local Q0-martingale (Zνt )t≤T . This will allow us to apply the change of measure
(33) locally and to use the localization Lemma 4.1 for τn ↑ T . In analogy to (31) we
obtain

V (η, ν, y0, τn) = EQ0 [Eη,ντn e
R τn
0 l(ηt,νt,Yt) dt], n ∈ N,

where l is the auxiliary function defined in (32), and where

Eη,ντn = E( 1
1−λ (

∫ ·
0

λθ(Yu) + η11
u Yu + η21

u dW 1
u +

∫ ·
0

λνu + η12
u Yu + η22

u dW 2
u))τn .

To eliminate the Itô exponential Eη,ντn , we pass to the new probability measure Rη,νn on
(Ω,FT ) with density process dRη,νn /dQ0|Ft := Eη,νt∧τn , t ∈ [0, T ]. It remains to justify
this change of measure. For this purpose, note that the process η ∈ C takes its values
in a compact subset Γ ⊂ R4 and that θ2(y) ≤ (a3|y| + a4)2 ≤ 2(a2

3y
2 + a2

4), due to
Assumption 2.1. Using the definition of τn we can verify the Novikov condition; see,
e. g., [29], Theorem 6.1 and the note after it. This allows us to write

V (η, ν, y0, τn) = ERη,νn [e
R τn
0 l(ηt,νt,Yt) dt], n ∈ N. (60)

By Girsanov’s theorem, the dynamics of Y follows under Rη,νn the SDE

dYt = h(ηt, νt, Yt) dt+ ρ dW η,ν
t on {t ≤ τn} (61)

for the drift function h given by (35) and for a two-dimensional Rη,νn -Wiener process
W η,ν . Note that (60) can be viewed as a cost functional of an “expected exponential
of integral criterion” with dynamics (61); cf. p. 10.

Let us next introduce the auxiliary function γ ≥ 0 by

γ(η, ν, y) := (1− λ)l(η, ν, y) + ϕy(y)h(η, ν, y)
− inf
ν∈R
{(1− λ)l(η, ν, y) + ϕy(y)h(η, ν, y)}. (62)

Inserting the minimizer ν∗(η, y) introduced in (45), we then see that γ takes the
condensed form

γ(η, ν, y) = 1
2

λ
1−λ (ν − ν∗(η, y))2. (63)

Later on this representation of γ will be crucial to eliminate the control ν in the
dynamics of Y . In terms of γ our EBE (54) yields the inequality

Λ̃(λ) ≤ 1
2‖ρ‖

2[ϕyy + 1
1−λϕ

2
y] + (1− λ)l(η, ν, ·) + ϕyh(η, ν, ·)− γ(η, ν, ·). (64)

By Itô’s formula applied to ϕ ∈ C2(R) and to the dynamics of Y in (61), this estimate
translates on {u ≤ τn} into

ϕ(Yu)− ϕ(y0)

=
∫ u

0

ϕy(Yt)h(ηt, νt, Yt) + 1
2‖ρ‖

2ϕyy(Yt) dt+
∫ u

0

ϕy(Yt)ρ dW
η,ν
t

≥
∫ u

0

Λ̃(λ)− 1
2

1
1−λ‖ρ‖

2ϕ2
y(Yt)− (1− λ)l(ηt, νt, Yt) + γ(ηt, νt, Yt) dt

+
∫ u

0

ϕy(Yt)ρ dW
η,ν
t . (65)
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Dividing through 1 − λ, rearranging the terms, and taking the exponential on both
sides, we thus obtain from (60) that

V (η, ν, y0, τn)

≥ERη,νn [e
1

1−λ (eΛ(λ)τn+ϕ(y0)−ϕ(Yτn)+
R τn
0 γ(ηt,νt,Yt)dt)E(

∫ ·
0

ϕy(Yt)
1−λ ρ dW η,ν

t )τn ]

=ERη,νn [e
1

1−λ (eΛ(λ)τn+ϕ(y0)−ϕ(Yτn)+
R τn
0 γ(ηt,νt,Yt)dt)]. (66)

Here the last expectation is taken with respect to the probability measure R
η,ν

n on
(Ω,FT ) with density process

dR
η,ν
n

dRη,νn

∣∣
Ft

:= E(
∫ ·

0

ρϕy(Yu)
1−λ dW η,ν

u )t∧τn .

Indeed, since ϕy grows at most linearly according to Assumption 4.1 (a) and since ρ1,
ρ2 are bounded, this change of measure can be justified again by Novikov’s condition;
cf., e. g., [29], Theorem 6.1 and the note after it. By Girsanov’s theorem, the factor
process Y evolves under R

η,ν

n according to

dYt = [h(ηt, νt, Yt) + 1
1−λ‖ρ‖

2ϕy(Yt)] dt+ ρ dW
η,ν

t on {t ≤ τn},

where W
η,ν

denotes a two-dimensional R
η,ν

n -Wiener process. But this dynamics still
depends on the irrepressible control ν. To eliminate this dependence, we apply once
more a Girsanov transformation. Consider the probability measure Rηn on (Ω,FT )
with density process

d bRηn
dR

η,ν
n

∣∣
Ft

:= E(
∫ ·

0

λ
1−λ (ν∗(ηs, Ys)− νs) dW

2,η,ν

t )t∧τn .

Verifying once more the Novikov’s condition, we see that Rηn is well-defined, and the
inequality (66) translates into

V (η,ν,y0, τn)≥E bRηn [e
1

1−λ (eΛ(λ)τn+ϕ(y0)−ϕ(Yτn )+
R τn
0 γ(ηt,νt,Yt)dt) dR

η,ν
n

d bRηn
∣∣
Fτn

]. (67)

Moreover, Girsanov’s theorem yields that the dynamics of Y under R̂ηn on {t ≤ τn}
takes the form

dYt = [h(ηt, νt, Yt) + 1
1−λ‖ρ‖

2ϕy(Yt) + λ
1−λρ2(ν∗(ηt, Yt)− νt)]dt+ ρ dŴ η

t

in terms of the two-dimensional R̂ηn-Wiener process Ŵ η. Recalling from (35) and (45)
the definitions of the drift function h and of the minimizer ν∗(η, y), a straightforward
computation shows that this SDE is equivalent to

dYt = κ(ηt, Yt) dt+ ρ dŴ η
t , (68)

where κ denotes the auxiliary function introduced in Assumption 4.1 (b). To eliminate
the density dR

η,ν

n /dR̂ηn|Fτn , we define p := λ−1
λ < 0 and apply Hölder’s inequality with

1/p+ 1/q = 1 to (67) (see, e. g., [24], p. 191, for an extension of the classical result to
p < 0, q ∈ (0, 1)). This leads to

V (η, ν, y0, τn)≥E bRηn [e
q

1−λ (eΛ(λ)τn+ϕ(y0)−ϕ(Yτn))]1/q

×E bRηn [
(
dR

(η,ν)
n

d bR(η)
n

∣∣
Fτn

e
1

1−λ
R τn
0 γ(ηt,νt,Yt) dt

)p
]1/p. (69)
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But in view of (63) and our choice of p we see that(
dR

η,ν
n

d bRηn
∣∣
Fτn

e
1

1−λ
R τn
0 γ(ηt,νt,Yt) dt

)p
= E(

∫ ·
0

pλ
1−λ (ν∗(ηt,Yt)− νt) dŴ 2,η

t )τn .

Since the Itô exponential of a local martingale is always a supermartingale, it follows
that the expectation in (69) is less than 1. Raised to the power of 1/p < 0, this
estimate is reversed, and we obtain

V (η, ν, y0, τn) ≥ E bRηn [e
q

1−λ (eΛ(λ)τn+ϕ(y0)−ϕ(Yτn ))]1/q, n ∈ N. (70)

In our next step, we shall extend the measures R̂ηn|Fτn , n ∈ N, to a probability measure
R̂η on the σ-field FT whose restrictions to Fτn are equal to R̂ηn|Fτn for all n ∈ N. To
this end, note that the sequence τn increases to T and that the family (R̂ηn|Fτn )n∈N

is consistent in the sense that R̂ηn+1(A) = R̂ηn(A) for all A ∈ Fτn since

d bRηn
dQ0

∣∣
Fτn

= d bRηn
dR

η,ν
n

∣∣
Fτn

dR
η,ν
n

dRη,νn

∣∣
Fτn

dRη,νn
dQ0

∣∣
Fτn

= E(
∫ ·

0

1
1−λ (λθ(Yu) + η11

u Yu + η21
u + ϕy(Yu)ρ1)dW 1

u

+
∫ ·

0

η12
u Yu + η22

u + ϕy(Yu)ρ2 dW
2
u)τn , n ∈ N, (71)

is a discrete-time Q0-martingale. Thus the existence of a unique extension R̂η to
σ(∪n∈NFτn) = FT follows from [32], Theorem V.4.2. More directly, (71) suggests to
define the probability measure R̂η on (Ω,FT ) by

d bRη
dQ0

∣∣
FT

:= E(
∫ ·

0

1
1−λ (λθ(Yu) + η11

u Yu + η21
u + ϕy(Yu)ρ1)dW 1

u

+
∫ ·

0

η12
u Yu + η22

u + ϕy(Yu)ρ2 dW
2
u)T . (72)

Since the functions θ, ϕ grow at most linearly, it follows similar to page 5 that
R̂η is well-defined, i. e., EQ0 [dR̂η/dQ0|FT ] = 1. In particular, the corresponding
Itô exponential is a Q0-martingale up to time T , and in view of (71) this yields
R̂η|Fτn = R̂ηn|Fτn for all n ∈ N. We thus see that the estimate (70) is equivalent to

V (η, ν, y0, τn) ≥ E bRη [e
q

1−λ (eΛ(λ)τn+ϕ(y0)−ϕ(Yτn ))]1/q for any n ∈ N.

Now we are ready to replace the stopping times τn by the deterministic time T by
passing to the limit n ↑ ∞. Indeed, as shown in Lemma 4.1, the left-hand side
increases to V (η, ν, y0, T ) as n ↑ ∞; cf. Lemma 4.1. Applying Fatou’s lemma and
afterwards Jensen’s inequality to the rightmost expectation, we now obtain the lower
bound

V (η, ν,y0,T)≥E bRη [e
1

1−λ (eΛ(λ)T+ϕ(y0)−ϕ(YT ))]≥ e
1

1−λ (eΛ(λ)T+ϕ(y0)+E bRη [−ϕ(YT )])

for any finite horizon T and for all controls η ∈ C, ν ∈ M. Taking the scaling
1
T ln(·)1−λ on both sides and passing to the limit T ↑ ∞, this yields

lim
T↑∞

1
T ln( inf

ν∈M
inf
η∈C

V (η, ν, y0, T )1−λ) ≥ Λ̃(λ) + lim
T↑∞

1
T inf
η∈C

E bRη [−ϕ(YT )].
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Thus, the constant Λ̃(λ) provides a lower bound if

lim
T↑∞

1
T inf
η∈C

E bRη [−ϕ(YT )] = 0. (73)

Indeed, Assumption 4.1 (a) ensures that ϕ grows at most quadratically, i. e., there
exists some constant K1 > 0 with |ϕ(y)| ≤ K1(1 + y2). Therefore, we have the
bounds

−K1(1 + sup
η∈C

E bRη [Y 2
T ]) ≤ inf

η∈C
E bRη [−ϕ(YT )] ≤ K1(1 + sup

η∈C
E bRη [Y 2

T ]). (74)

Recall now from (68) that Y evolves under R̂η, η ∈ C, according to the SDE

dYt = κ(ηt, Yt) dt+ ρ(Yt) dŴ
η
t .

Due to Assumption 4.1 (b) there exist constants C2, C3 > 0 such that the drift function
κ satisfies yκ(η, y) ≤ −C2y

2 + C3 for all η ∈ Γ. Therefore, Lemma 8.2 ensures that

sup
T≥0

sup
η∈C

E bRη [Y 2
T ] ≤ y2

0 + const. <∞.

But in view of (74) this implies (73), and hence

lim
T↑∞

1
T ln( inf

ν∈M
inf
η∈C

V (η, ν, y0, T )1−λ) ≥ Λ̃(λ). (75)

2) In the second part we identify controls η∗ ∈ C and ν∗ ∈M such that

Λ̃(λ) = lim
T↑∞

1
T ln(V (η∗, ν∗, y0, T )1−λ). (76)

Together with (75) this implies (56). Indeed, by compactness of Γ and continuity of
the functions l, h and ν∗(·, y) with respect to η, there exists

η∗(y) ∈ arg min
η∈Γ

{(1− λ)l(η, ν∗(y, η), y) + ϕy(y)h(η, ν∗(y, η), y)}. (77)

By a measurable selection argument η∗(·) can be chosen as a measurable function.
Set ν∗(y) := ν∗(η∗(y), y) (cf. (45)), and let η∗, ν∗ be the feedback controls defined by
η∗t := η∗(Yt), ν∗t := ν∗(Yt), t ≥ 0. In that case, we have η∗ ∈ C, and one easily proves
that the process ν∗ belongs to the classM.

In order to verify (76), we now proceed as in part 1). As in (60) we obtain

V (η∗, ν∗, y0, T ) = ERη∗,ν∗ [e
R T
0 l(η∗t ,ν

∗
t ,Yt) dt].

The measure Rη
∗,ν∗ is defined on (Ω,FT ) in terms of the density Eη

∗,ν∗

T . Since ν∗(η, ·)
grows at most linearly, this change of measure can be justified in analogy to page 5.
By Girsanov’s theorem, the dynamics of Y under Rη

∗,ν∗ follows the SDE

dYt = h(η∗t , ν
∗
t , Yt) dt+ ρ dW η∗,ν∗

t , (78)

where the drift function h is given by (35), and where (W η∗,ν∗

t )t≤T is a two-dimensional
Wiener process under Rη

∗,ν∗ ; cf. p. 15. Using the specific controls η∗, ν∗, the auxil-
iary function γ in (62) satisfies γ(η∗t , ν

∗
t , Yt) = 0, and we also obtain equality in (64).

Along the lines of part 1) this implies

V (η∗, ν∗, y0,T)=ERη∗,ν∗ [e
1

1−λ (eΛ(λ)T+ϕ(y0)−ϕ(YT ))E(
∫ ·

0

ϕy(Yt)
1−λ ρ dW η∗,ν∗

t )T ],
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in analogy to (66). Once more the Itô exponential is interpreted as the density of a
new probability measure R̂η

∗
on (Ω,FT ). Since the drift function h(η∗(·), ν∗(·), ·) of Y

under Rη
∗,ν∗ only depends on the control η∗ and satisfies the linear growth condition

|h(η∗(y), ν∗(y), y)| ≤ K2(1 + |y|), we may proceed in analogy to page 5 to justify this
change of measure. Then we get

V (η∗, ν∗, y0, T ) = e
1

1−λ (eΛ(λ)T+ϕ(y0)
E bRη∗ [e−

1
1−λϕ(YT )]. (79)

Moreover, by Girsanov’s theorem, the dynamics of Y with respect to R̂η
∗
is given by

dYt = κ(η∗t , Yt) dt+ ρ dŴ η∗

t , (80)

where (Ŵ η∗

t )t≤T is a two-dimensional Wiener process, and where the drift function κ
satisfies Assumption 4.1 (b). In analogy to part 1), we now take the scaling 1

T ln(·)1−λ

on both sides of (79) and then pass to the limit T ↑ ∞. For this purpose, note that

sup
T≥0

E bRη∗ [Y 2
T ] <∞ and that sup

T≥0
E bRη∗ [exp(k|YT |)] <∞ for any k ∈ R,

due to Assumption 4.1 (b) and Lemma 8.2 applied to the SDE (80). If ϕy is bounded
and consequently |ϕ(y)| ≤ K3(1 + |y|), then this implies the uniform upper bound

sup
T≥0

E bRη∗ [exp(− 1
1−λϕ(YT ))] ≤ sup

T≥0
E bRη∗ [exp( 1

1−λK3(1 + |YT |))] <∞.

This uniform boundedness among all T clearly also holds, if ϕ is bounded below. In
particular, the identity (79) translates into

lim
T↑∞

1
T ln(V (η∗, ν∗, y0, T )1−λ) = Λ̃(λ).

Thus we have shown (76). This ends the proof of (56).

3) In our last step we return to the initial problem of robust utility maximization. The
finite horizon duality relation (26) holds for any (regular) convex class of measures,
and in particular for the one-point set {Qη∗}. In analogy to (29) it thus follows that
the maximal value for expected power utility in the specific model Qη

∗
satisfies the

duality formula
UQ

η∗

T (x0) = 1
λx

λ
0 ( inf
ν∈M

V (η∗, ν, y0, T ))1−λ.

Using this representation and the duality relation (29) for the whole set Q, we obtain
(59) immediately from (56) and (58).

Theorem 4.1 shows that the solution (Λ̃(λ), ϕ) to the EBE (54) specified in As-
sumption 4.1 describes the exponential growth of the maximal robust power utility
UT (x0) as T ↑ ∞. We have also seen that the maximal utility in the specific model
Qη
∗
grows at the same rate as UT (x0). In the next step we shall use these facts in

order to identify an optimal long term investment strategy π∗ ∈ A. For this purpose,
we introduce the additional regularity

Assumption 4.2. Let (Λ̃(λ), ϕ) be the solution to the EBE (54) introduced in As-
sumption 4.1, and let η∗ denote the corresponding minimizing function. Then the
function κ̃ defined by

κ̃(η, y) := g(y) + λ
1−λρ1(θ(y) + η11,∗(y)y + η21,∗(y))

+ (ρ, η1·y + η2·) + [ 1
1−λρ

2
1 + ρ2

2]ϕy(y). (81)

satisfies yκ̃(η, y) ≤ −C4y
2 + C5 for all η ∈ Γ with constants C4, C5 > 0.
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Theorem 4.2. Under the regularity Assumptions 4.1 and 4.2 we have:

i) The value Λ̃(λ) given by the solution to the EBE (54) can be identified as the
optimal exponential growth rate

Λ(λ) = sup
π∈A

lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ

T )λ]

for robust expected power utility. In particular, (59) implies

Λ(λ) = lim
T↑∞

1
T lnUT (x0) = lim

T↑∞
1
T lnUQ

η∗

T (x0),

where Qη
∗ ∈ Q is defined in terms of the control η∗ in (57).

ii) In the specific model Qη
∗
, the maximal growth rate of power utility

ΛQη∗ (λ) := sup
π∈A

lim
T↑∞

1
T lnEQη∗ [(Xπ

T )λ]

coincides with Λ(λ).

iii) Let π∗t = π∗(Yt), t ≥ 0, be the trading strategy defined in terms of the function
(53). Then π∗ belongs to class A, and it satisfies the optimality condition

Λ(λ) = lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ∗

T )λ] = lim
T↑∞

1
T lnEQη∗ [(Xπ∗

T )λ]. (82)

In other words, the strategy π∗ and the measure Qη
∗ ∈ Q form a saddle point for the

robust optimization problem (19).

Proof. 1) Theorem 4.1 shows that the maximal power utility UQ
η∗

T (x0) in the specific
model Qη

∗
grows exponentially with rate Λ̃(λ), i. e.,

Λ̃(λ) = lim
T↑∞

1
T lnUQ

η∗

T (x0) = lim
T↑∞

1
T ln sup

π∈AT
EQη∗ [(Xπ

T )λ].

Since A ⊆ AT , this implies

Λ̃(λ) ≥ sup
π∈A

lim
T↑∞

1
T lnEQη∗ [(Xπ

T )λ] ≥ sup
π∈A

lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ

T )λ] = Λ(λ).

In order to verify that this chain of inequalities is indeed a series of equalities, it
suffices to show that π∗ belongs to A, and that

Λ̃(λ) ≤ lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ∗

T )λ]. (83)

This yields the converse inequality Λ̃(λ) ≤ Λ(λ), and hence the identity Λ̃(λ) =
Λ(λ) = ΛQη∗ (λ). In particular, the strategy π∗ satisfies (82).

Let us first show that π∗ is admissible in the sense of Definition 2.1. For this
purpose, note that the adapted process π∗t = π∗(Yt), t ≥ 0, admits continuous paths
and that the unique strong solution to (16) takes the form

Xπ∗

t = x0e
R t
0 π
∗
uσ dW

1,η
u +

R T
0 r(Yu)+σπ∗u[θ(Yu)+η11

u Yu+η21
u ]− 1

2σ
2(π∗u)2 du) > 0 (84)

for any t ≥ 0. Thus the processes defined by the number of shares

ξ∗,0t = Xπ
∗

t (1−π∗t )

S0
t

and ξ∗,1t = Xπ
∗

t π∗t
S1
t

, t ≥ 0,
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are continuous and adapted to the Brownian filtration, hence predictable. Moreover,
the integrals in (15) are well-defined for ξ∗ = (ξ∗,0, ξ∗,1). In other words, π∗ associated
with ξ∗ is an admissible long term investment process.

To verify (83), we derive suitable lower bounds for infQη∈QEQη [(Xπ∗

T )λ] for any
finite horizon T and then pass to the limit. We first argue for a fixed control η ∈ C and
the corresponding model Qη ∈ Q. The representation (84) yields the decomposition

EQη [(Xπ∗

T )λ] = xλ0EQη [E(
∫ ·

0

λσπ∗t dW
1,η
t )T e

R T
0

el(π∗t ,ηt,Yt) dt], (85)

where we use, as in (47), the function l̃. In order to eliminate the Itô exponential, we
introduce a new probability measure Q

η
on (Ω,FT ) with density

dQ
η

dQη

∣∣
FT

:= E(
∫ ·

0

λσπ∗t dW
1,η
t )T = E(

∫ ·
0

λσπ∗(Yt) dW
1,η
t )T . (86)

This requires to verify EQη [dQ
η
/dQη|FT ] = 1. Indeed, the factor process Y evolves

under Qη according to the SDE (14a), and the drift function satisfies

|g(y) + (ρ, η1·y + η2·)|2 ≤ K1(1 + y2),

due to Assumption 2.1 and compactness of Γ ⊂ R4. Thus, by Lemma 8.1, there exists
some constant K2 > 0 such that sup0≤t≤T EQη [exp(K2Y

2
t )] < ∞. Since |π∗(y)| ≤

K3(1 + |y|), this implies supt≤T EQη [exp(δ(λσπ∗(Yt))2] < ∞ as soon as δ > 0 is
chosen sufficiently small. Therefore, [29], Example 3 of Subsection 6.2, guarantees
that (86) defines a probability measure on (Ω,FT ). In particular, equation (85)
becomes equivalent to

EQη [(Xπ∗

T )λ] = xλ0EQη [e
R T
0

el(π∗t ,ηt,Yt) dt]. (87)

By Girsanov’s theorem, the factor process Y follows under Q
η
the SDE

dYt = h̃(π∗t , ηt, Yt) dt+ ρ dW
η

t , t ≤ T, Y0 = y0. (88)

Here (W
η

t )t≤T is a two-dimensional Q
η
-Wiener process and the drift function h̃ is de-

fined by (50). Note that the right-hand side of (87) can be viewed as a cost functional
of an “exponential of integral criterion” with dynamics (88).

In terms of the functions l̃ and h̃ the EBE (54) for the pair (Λ̃(λ), ϕ) can be
rewritten as

Λ̃(λ) = 1
2‖ρ‖

2[ϕyy + ϕ2
y] + inf

η∈Γ
{l̃(π∗, η, ·) + ϕyh̃(π∗, η, ·)}. (89)

For clarity of exposition the precise arguments are postponed to part 2) of this proof.
We now proceed in analogy to the proof of Theorem 4.1. Note that the roles played
by l, h are taken over by l̃, h̃.

Applying Itô’s formula to ϕ ∈ C2(R) and to the dynamics (88) we obtain

ϕ(YT)=ϕ(y0)+
∫ T

0

ϕy(Yt)h̃(π∗t , ηt,Yt)+ 1
2‖ρ‖

2ϕyy(Yt)dt+
∫ T

0

ϕy(Yt)ρ dW
η

t .

The alternative version (89) of our EBE thus yields the inequality

ϕ(YT ) ≥ ϕ(y0) +
∫ T

0

Λ̃(λ)− l̃(π∗t , ηt, Yt) dt+ ln E(
∫ ·

0

ϕy(Yt)ρ dW
η

t )T .
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Rearranging the terms and taking the exponential on both sides, (87) allows us to
deduce that

EQη [(Xπ∗

T )λ] = xλ0EQη [e
R T
0

el(π∗t ,ηt,Yt) dt]
≥ xλ0e

eΛ(λ)T+ϕ(y0)EQη [e−ϕ(YT ) E(
∫ ·

0

ϕy(Yt)ρ dW
η

t )T ].

Applying once more a Girsanov transformation to eliminate the Itô exponential, we
obtain

EQη [(Xπ∗

T )λ] ≥ xλ0e
eΛ(λ)T+ϕ(y0)E bQη [e−ϕ(YT )], (90)

where the expectation is taken with respect to the probability measure Q̂η on (Ω,FT )
defined by

d bQη
dQ

η

∣∣
FT

:= E(
∫ ·

0

ϕy(Yt)ρ dW
η

t )T .

In particular, (90) means that

lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ∗

T )λ] ≥ Λ̃(λ) + lim
T↑∞

1
T ln inf

Qη∈Q
E bQη [e−ϕ(YT )]. (91)

Since |h̃(π∗(y), η, y|)2 ≤ K4(1 + y2), this second change of measure can be justified
again by Lemma 8.1 combined with [29], Example 3 of Subsection 6.2. By Girsanov’s
theorem, the dynamics of Y under the new probability measure Q̂η is given by

dYt = (h̃(π∗t , ηt, Yt) + ‖ρ‖2ϕy(Yt)) dt+ ρ dŴ η
t , t ≤ T,

where Ŵ η
t is a two-dimensional Q̂η-Wiener process. Moreover, inserting the definition

(53) of π∗(y), a straightforward computation yields the identity

h̃(π∗(y), η, y) + ‖ρ‖2ϕy(y) = κ̃(η, y).

Here the function κ̃ introduced in Assumption 4.2 satisfies the inequality yκ̃(η, y) ≤
−C4y

2 + C5 for all η ∈ Γ with appropriate constants C4, C5 > 0. Thus, by Lemma
8.2, the quadratic moments E bQη [Y 2

T ] are bounded above uniformly with respect to all
processes η ∈ C and T ≥ 0, i. e.,

sup
T≥0

sup
η∈C

E bQη [Y 2
T ] ≤ K5(1 + y2

0).

Note now that |ϕ(y)| ≤ K6(1+y2) for some constant K6 > 0, since the first derivative
ϕy grows at most linearly; cf. Assumption 4.1 (a). Using Jensen’s inequality, we obtain
the lower bound

ln inf
Qη∈Q

E bQη [e−ϕ(YT )] ≥ inf
η∈C

E bQη [−ϕ(YT )] ≥ −K6(1 + sup
η∈C

E bQη [Y 2
T ])

≥ −K6(1 +K5(1 + y2
0))

for any finite horizon T . Thus the last term in (91) non-negative, and so the desired
estimate (83) follows from (91).

2) It remains to verify that the solution (Λ̃(λ), ϕ) to our EBE (54) also satisfies (89)
and vice versa. In other words, the EBE (89) is an alternative version of the original
equation (54). For this purpose, we use the minimizing functions η∗ and ν∗ defined
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in Theorem 4.1 and write η∗, ν∗ and π∗ instead of η∗(y), ν∗(y) and π∗(y) to simplify
the notation. Then an easy but tedious computation yields the identity

Λ̃(λ) = 1
2‖ρ‖

2[ϕyy(y) + ϕ2
y(y)] + l̃(π∗, η∗, y) + ϕy(y)h̃(π∗, η∗, y).

Thus the pair (Λ̃(λ), ϕ) also solves the EBE (89) if and only if for all η ∈ Γ

0 ≤ l̃(π∗, η, y) + ϕy(y)h̃(π∗, η, y)− [l̃(π∗, η∗, y) + ϕy(y)h̃(π∗, η∗, y)]. (92)

Inserting formula (53) for π∗, this inequality takes the explicit form

0 ≤ λ
1−λ [(η11 − η11,∗)y + (η21 − η21,∗)][θ(y) + η11,∗y + η21,∗]

+ 1
1−λρ1ϕy(y)[(η11 − η11,∗)y + (η21 − η21,∗)]

+ ρ2ϕy(y)[(η21 − η21,∗)y + (η22 − η22,∗)] (93)

for all η ∈ Γ. To derive (93), we fix η ∈ Γ and define the convex combination
η̃α := η∗ + α(η − η∗), α ∈ (0, 1). Then η̃α belongs to Γ, due to convexity of this set.
Moreover, using the minimizers η∗, ν∗ and the specific choice ν∗α(y) := ν∗(η̃α, y) =
−η̃12

α y − η̃22
α − ρ2(y)ϕy(y), we easily derive the inequality

0≤ (1−λ)l(η̃α,ν∗α(y),y)+ϕy(y)h(η̃α,ν∗α(y),y)−[(1−λ)l(η∗,ν∗,y)+ϕy(y)h(η∗,ν∗,y)]

= α[terms in (88)] + 1
2

λ
1−λα

2[(η11 − η11,∗)y + (η21 − η21,∗)]2].

Dividing finally by α and letting afterwards α tend to zero yields the desired estimate
(93) and equivalently (92). Thus we have shown that the solution (Λ̃(λ), ϕ) to the
EBE (54) also satisfies (89). This ends the proof.

Remark 4.2. The duality approach used above requires two verification theorems.
The first one characterizes the growth rate of UT (x0) in terms of the EBE (54), and
the second one identifies an optimal long term investment strategy and the associated
optimal growth rate Λ(λ). In this remark, we discuss heuristically a more direct
approach to (19) via stochastic differential game techniques; see, e. g., [12] for an
introduction. To this end, note that (if Xπ

t > 0 for all t)

EQη [(Xπ
T )λ] = xλ0ERη,π [e

R T
0

el(πt,ηt,Yt) dt],
where l̃ is defined in (47), the measure Rπ,η is introduced in (48), and the dynamics
of Y under Rη,π is specified in (49). This suggests that

UT (x0) = xλ0v
u(y, T ) := xλ0 sup

π∈AT
inf
η∈C

ERη,π [e
R T
0

el(πt,ηt,Yt) dt], Y0 = y,

where vu can be seen as the upper value function of a stochastic differential game
with maximizing “player” π and minimizing “player” η. The function vu should be
determined by the HJB-Isaacs equation

vut = 1
2‖ρ‖

2vuyy + sup
π∈R

inf
η∈Γ
{l̃(π, η, ·)vu + h̃(π, η, ·)vuy }, vu(·, 0) ≡ 1.

Using the heuristic transform ln vu(y, T ) ≈ lnUT (x0) ≈ Λ(λ)T +ϕ(y), this translates
into the following EBE of Isaacs type:

Λ(λ) = 1
2‖ρ‖

2[ϕyy + ϕ2
y] + sup

π∈R
inf
η∈Γ
{l̃(π, η, ·) + ϕyh̃(π, η, ·)}.
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If this equation has a solution (Λ(λ), ϕ), then it is easy to show that sup and inf can be
interchanged and that the saddle-point is attained by π∗(y) in (53) and η∗(y) defined
in (57), i. e., the EBE of Isaacs type is actually a version of (54). We conjecture that
the alternative approach via differential games is also feasible. However, the detailed
derivation would be a lenghty and technical exercise that is beyond the scope of the
present paper.

5 Existence of a solution to the ergodic Bellman
equation

Our results rely on the existence of a specific solution (Λ̃(λ), ϕ) ∈ R+ ×C2(R) to the
EBE (54). More generally, an EBE is given by

Λ̃ = Dϕ(x) +H(x,∇ϕ) + q(x), x ∈ Rd, (94)

where q maps from Rd to R, D is a second order differential operator, and where
H is a real-valued non-linear function of the gradient ∇ϕ, called the Hamiltonian.
A solution to (94) is a pair (Λ̃, ϕ) of a constant Λ̃ and a function ϕ : Rd → R.
Such equations have been analyzed by various authors; see, e. g., [8], [25], [30] for a
discussion related to risk-sensitive control problems, or [1], [2]. Unfortunately their
existence results do in general not apply to our EBE (54). The main difficulty relies
on three facts: We consider a model with non-linear coefficients r, g and m appearing
in the functions l and h, the cost function l may grow quadratically in y, and (54)
exhibits a non-linearity with respect to the first derivative ϕy. If the discussion is
limited to linear coefficients, then a quadratic Ansatz may yield an explicit solution
to (54); see, e. g., [9], [33], and also Subsection 6.2 for a case study.

Let us now turn to the existence problem for non-linear coefficients. The EBE
(54) can be rewritten in the condensed form

Λ̃(λ) = 1
2‖ρ‖

2ϕyy(y) + 1
2 (ρ̂ϕy(y))2 + inf

η∈Γ
{n(η, y) + ϕy(y)m(η, y)}, (95)

where we use the notation ρ̂ :=
√

1
1−λρ

2
1 + ρ2

2,

n(η, y) := 1
2

λ
1−λ [θ(y) + η11y + η21]2 + λr(y),

m(η, y) := g(y) + 1
1−λρ1(λθ(y) + η11y + η21) + ρ2(η12y + η22).

The following existence result is deduced from Fleming and McEneaney [8]. Their con-
struction of a solution involves a parameterized family of finite time horizon stochastic
differential games; see, e. g., Fleming and Souganidis [12]. The associated value func-
tion is characterized in terms of a parabolic PDE, called Isaac’s equation, and the
existence of a solution (Λ̃(λ), ϕ) follows by taking appropriate limits of the Isaac’s
PDE when both “time” tends to infinity and the underlying parameter converges to
zero.

Lemma 5.1. In addition to Assumption 2.1 let us assume that θ is bounded, that
Γ ⊂ {(0, 0)× R2}, and that

∃ K > 0 : gy(y) + λ
1−λρ1θy(y) ≤ −K for all y ∈ R. (97)

Then there exist a pair Λ̃(λ) ∈ R+, ϕ ∈ C2(R) that solves the EBE (54). Moreover,
we have |ϕy| ≤ maxη∈Γ ‖ny(·, y)‖∞/K, and so this solution also satisfies the regularity
Assumptions 4.1 and 4.2.
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Proof. Our assumptions ensure boundedness of n ≥ 0, ηy andmy on Γ×R. Moreover,
the mean value theorem combined with (97) gives

(x− y)(m(η, x)−m(η, y)) ≤ −K|x− y|2 for all x, y ∈ R, η ∈ Γ.

The functions n, m thus satisfy condition (7.2) in Fleming and McEneaney [8], and
applying [8], Theorem 7.1, for γ := (

√
2ρ̂)−1 and ε := ‖ρ‖2/ρ̂2 the desired existence

result follows.

6 Explicit results

6.1 Black-Scholes model with uncertain drift
For constant coefficients r(y) ≡ r and m(y) ≡ m, the reference model Q0 in Section
2 becomes the Black-Scholes model with price dynamics

dS0
t = S0

t r dt, dS1
t = S1

t (mdt+ σ dW 1
t ).

In particular, the market price of risk function θ(y) = m−r
σ is constant. Taking the

specific set Γ = {(0, 0)} × [a, b] × {0}, a ≤ 0 ≤ b, each measure Qη ∈ Q corresponds
to a drift perturbation of the following type:

dS1
t = S1

t ([m+ ση21
t ] dt+ σ dW 1,η

t ).

In this example the factor process Y plays no role. In particular, the maximal expected
utility for a finite horizon does not depend on the initial state of the factor process.
Hence the function ϕ appearing in the heuristic separation of time and space variables
(43) is constant, and its derivatives ϕy, ϕyy vanish. The EBE (54) thus reduces to

Λ̃(λ) = inf
ν∈R

inf
η∈Γ
{ 1

2
λ

1−λ [(θ + η21)2 + ν2] + λr} = 1
2

λ
1−λ inf

η∈Γ
{(θ + η21)2}+ λr.

The number Λ̃(λ) can be expressed in terms of the element η21,∗ ∈ [a, b] which mini-
mizes the absolute value |θ+η21| among all η21 ∈ [a, b]. Defining the constant controls
η∗t := (0, 0, η21,∗, 0) and ν∗t := 0, t ≥ 0, the verification theorems can be transferred
to our present example in a simplified form which does not not require any additional
conditions as in Assumptions 4.1 and 4.2. As a result we get the following description
of the aymptotics of robust expected power utility:

• The maximal robust utility UT (x0) grows exponentially with rate

Λ̃(λ) = 1
2

λ
1−λ (θ + η21,∗)2 + λr > 0.

• Λ(λ) = sup
π∈A

lim
T↑∞

1
T ln inf

Qη∈Q
EQη [(Xπ

T )λ] = Λ̃(λ)

• The optimal long term strategy takes the form

π∗t := 1
1−λ

1
σ (θ + η21,∗), t ≥ 0.

• The asymptotic worst-case model Qη
∗
is given by the constant control η∗t =

(0, 0, η21,∗, 0), and it does not depend on the parameter λ.

Remark 6.1. Using methods from robust statistics, Schied [37] shows that the mea-
sure Qη

∗
is actually least favorable in the following sense: For any finite maturity,

the robust utility maximization problem (17) is equivalent to the classical problem for
Qη
∗
, regardless of the choice of the underlying utility function u.
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6.2 Geometric Ornstein-Uhlenbeck model with uncertain mean
reversion

As our second case study, we consider the case where the economic factor Y is of
OU type, and where there interest rate r is constant. In our reference model Q0, the
factor Y is assumed to be a classical OU process with constant rate of mean reversion
η0 > 0 and volatility σ > 0, i. e.,

dYt = −η0Yt dt+ σ dW 1
t , Y0 = y0. (98)

We assume that S1
t := exp(Yt + αt), α ∈ R, describes the price process of the risky

asset. By Itô’s formula, the dynamics of S1 is governed by the SDE

dS1
t = S1

t (αdt+ dYt + 1
2 d〈Y 〉t) = S1

t ((−η0Yt + 1
2σ

2 + α)dt+ σ dW 1
t ).

Hence this example corresponds to the general model of Section 2 for the choice
g(y) = −η0y, ρ1 = σ, ρ2 = 0, m(y) = −η0y+ 1

2σ
2 +α, and for the affine market price

of risk function
θ(y) = 1

σ (−η0y + 1
2σ

2 + α− r).

Let us suppose that the investor is uncertain about the “true” future rate of mean
reversion: Instead of a constant rate we admit any rate process that is progressively
measurable and that takes its values in some interval [a, b], 0 < a ≤ η0 ≤ b <∞. This
uncertainty about the true rate of mean reversion can be embedded into our general
model by choosing the set

Γ = [η0−bσ , η0−aσ ]× {(0, 0, 0)}.

Indeed, let Qη ∈ Q denote the probabilistic model generated by a Γ-valued, proges-
sively measurable process η = (ηt)t≥0; cf. (12). In view of (14a), the factor process Y
then evolves under Qη according to

dYt = −(η0 − ση11
t )Yt dt+ σ dW 1,η

t ,

and the resulting mean reversion process (η0 − ση11
t )t≥0 takes values in [a, b].

To prepare the analysis of the asymptotic robust utility maximization problem
(19), we first solve its non-robust version

maximize lim
T↑∞

1
T lnEQ0 [(Xπ

T )λ] among all π ∈ A (99)

for the specific model Q0. This problem has been studied, amongst others, by Fleming
and Sheu [9] and Pham [33]. By the following proposition we recover their results
as a special case of our general robust duality approach. To indicate the non-robust
case, we denote the optimal growth rate for (99) by ΛQ0(λ). Note that Q = {Q0}
if we take the one-point set Γ = {(0, 0, 0, 0)}. Thus our general EBE (54) takes the
simplified form

Λ̃Q0(λ) = 1
2σ

2[ϕyy(y) + 1
1−λϕ

2
y(y)] + λr + 1

2
λ

1−λ (
−η0y+

1
2σ

2+α−r
σ )2

+ ϕy(y)[− 1
1−λη0y + λ

1−λ ( 1
2σ

2 + α− r)], (100)

where the infimum among all ν ∈ R is attained for ν∗(y) ≡ 0.
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Proposition 6.1. The EBE (100) has the solution

Λ̃Q0(λ) = 1
2 (1−

√
1− λ)η0 + λ(r + 1

2σ2 ( 1
2σ

2 + α− r)2), (101a)

ϕ(y) = 1
2 (1−

√
1− λ) η0σ2 y

2 − λ
σ2 ( 1

2σ
2 + α− r)y (101b)

which satisfies our regularity Assumptions 4.1 and 4.2. Thus it holds that

Λ̃Q0(λ) = lim
T↑∞

1
T lnUQ0

T (x0) = ΛQ0(λ) = sup
π∈A

lim
T↑∞

1
T lnEQ0 [(Xπ

T )λ].

Moreover, an optimal feedback strategy π∗t = π∗(Yt), t ≥ 0, for our investment problem
(99) is given by the affine function

π∗(y) = − 1√
1−λ

η0
σ2 y + 1

σ2 ( 1
2σ

2 + α− r). (102)

Proof. Following [9] and [33] we are looking for a quadratic solution ϕ(y) = 1
2Ay

2+By.
Inserting the derivatives in (100) and comparing the coefficients of the terms in y2, in
y, and the constants yields that the EBE (100) holds for every triple (A,B, Λ̃Q0(λ))
satisfying the system of equations

0 = 1
2σ

2A2 − η0A+ λ
2σ2 η

2
0

0 = σ2AB + λ( 1
2σ

2 + α− r)A−Bη0 − λ
σ2 ( 1

2σ
2 + α− r)η0

Λ̃Q0(λ) = 1
2σ

2(A+ 1
1−λB

2) + λ
1−λ ( 1

2σ
2 + α− r)B + λr + 1

2
λ

1−λ (
1
2σ

2+α−r
σ )2.

The quadratic equation for A has the solutions A± = (1 ±
√

1− λ) η0σ2 . We choose
A = A−, and we shall explain in Remark 6.2 why the other solution is irrelevant. A
straightforward calculation gives B = − λ

σ2 ( 1
2σ

2 +α−r) and finally the expressions for
Λ̃Q0(λ) and ϕ in (101). The parabola ϕ is bounded below, ϕy grows linearly and the
functions κ, κ̃ defined in Assumption 4.1 (b) and 4.2 satisfy the regularity condition

yκ(0, y) = yκ̃(0, y) = − 1√
1−λη0y

2.

Applying Theorem 4.1 and Theorem 4.2 ends the proof.

Remark 6.2. Using the other root A+ yields ϕ(y) = 1
2A+y

2 +By and

Λ̃Q0(λ) = 1
2 (1 +

√
1− λ)η0 + λ(r + 1

2σ2 ( 1
2σ

2 + α− r)2).

In particular, this example illustrates that the solution to an EBE is not necessar-
ily unique. On the other hand, the “ergodicity” Assumption 4.1 (b) selects the good
candidate. Indeed, the proof of Theorem 4.1 requires that limT↑∞

1
T E bRη [Y 2

T ] = 0,
where Y follows the SDE (68). Given the geometric OU model and the solutions
ϕ(y) = 1

2A±y
2 +By this SDE takes the form

dYt = ± η0√
1−λYt dt+σdŴ 1,η

t , Y0 = y0.

The factor process Y is an “explosive” Gaussian process for the root A+ in the sense
that limT↑∞

1
T E bRη [Y 2

T ] = ∞. Thus the arguments used in the proof of Theorem 4.1
fail and so the solution associated with A+ is irrelevant. Conversely, taking A−,
Theorem 8.2 applies to the ergodic process Y .
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As a complement to Proposition 6.1 we look at the maximal robust utility UQ0
T (x0)

attainable at time T and the asymptotics of the optimal investment strategy π∗,T

as T ↑ ∞. The following proposition extends Proposition 5.6 and 5.7 in Föllmer
and Schachermayer [16] by including an interest rate r > 0 and the additional drift
component α for the price process S1.

Proposition 6.2. For any initial condition Y0 = y0, the maximal robust expected
utility UQ0

T (x0) takes the form

UQ0
T (x0) = 1

λx
λ
0 [(A−T )−1/2e

BT (y0)+
λ

1−λrT+(A−T )−1CT (y0)]1−λ, (103)

where we use the notation

A±T :=1− 1
2 (1− (1− λ)−1/2)(1± exp(−2η0(1− λ)−1/2T )),

BT (y) :=− η0
2σ2 [(1− λ)−1/2 − (1− λ)−1]y2 + 1

σ2
λ
λ−1 ( 1

2σ
2 + α− r)y

− 1
2 [η0((1− λ)−1/2 − (1− λ)−1) + 1

σ2
λ
λ−1 ( 1

2σ
2 + α− r)2]T,

CT (y) := η0
2σ2 ((1− λ)−1/2 − (1− λ)−1) exp(−2η0(1− λ)−1/2T )y2

− 1
σ2

λ
λ−1 ( 1

2σ
2 + α− r) exp(−η0(1− λ)−1/2T )y

+ 1
4σ2

λ2

(1−λ)3/2
( 1

2σ
2 + α− r)2(1− exp(−2η0(1− λ)−1/2T )).

The optimal proportion π∗,Tt is an affine function of the current state Yt of the factor
process given by π∗,Tt = a[T − t]Yt + b[T − t], where

a[T − t] :=− η0
σ2 (1− λ)−1/2A+

T−t(A
−
T−t)

−1,

b[T − t] := 1
σ2 ( 1

2σ
2 + α− r)[1 + (A−T−t)

−1 λ
1−λe

−η0(1−λ)−1/2(T−t)].

Proof. Detailed computations can be found in [26], Chapter 4.

Since A±T and CT (y0) converge to a finite limit as T ↑ ∞, we thus obtain

lim
T↑∞

1
T lnUQ0

T (x0) = (1− λ) lim
T↑∞

1
T (BT (y0) + λ

1−λrT ) = Λ̃Q0(λ),

in accordance with Proposition 6.1. Moreover, we have

lim
T↑∞

a[T − t] = − η0
σ2
√

1−λ and lim
T↑∞

b[T − t] = 1
σ2 ( 1

2σ
2 + α− r),

due to limT↑∞A±T = 1
2 (1 + (1 − λ)−1/2). Thus the asymptotic form of the optimal

strategy π∗,T as T ↑ ∞ is given by

lim
T↑∞

π∗,Tt = − 1
σ2
√

1−λη0Yt + 1
σ2 ( 1

2σ
2 + α− r), (104)

and so it coincides with the optimal long term strategy π∗ in (102). On the other
hand, Fleming and Sheu [9] observed that limT↑∞ π∗,Tt does not provide an optimal
long term strategy for power utility with parameter λ ≤ −3.

Let us now analyze the robust case. Since ΛQ0(λ) is increasing in η0, it is natural to
expect that the asymptotic worst-case measure Qη

∗
corresponds to the probabilistic

model, under which Y has the minimal rate of mean reversion a. The following
proposition confirms this conjecture.
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Proposition 6.3. For the geometric OU model with uncertain rate of mean reversion,
the optimal growth rate of robust power utility is given by

Λ(λ) = 1
2 (1−

√
1− λ)a+ λ(r + 1

2σ2 ( 1
2σ

2 + α− r)2) > 0,

and the maximal robust utility UT (x0) grows exponentially at this rate. The asymptotic
worst-case model Qη

∗
is determined by η∗t = (η0−aσ , 0, 0, 0), and the optimal long term

strategy π∗t = π∗(Yt) is specified by the affine function

π∗(y) = − 1√
1−λ

a
σ2 y + 1

σ2 ( 1
2σ

2 + α− r).

Proof. Replacing η0 in (101) by the minimal mean reversion a provides

Λ̃(λ) = 1
2 (1−

√
1− λ)a+ λ(r + 1

2σ2 ( 1
2σ

2 + α− r)2) > 0,

ϕ(y) = 1
2 (1−

√
1− λ) a

σ2 y
2 − λ

σ2 ( 1
2σ

2 + α− r)y

as a candidate for the solution to the EBE (54), and it is easy to verify that (Λ̃(λ), ϕ) is
indeed a solution. The corresponding minimizers are ν∗(y) ≡ 0, η∗(y) ≡ (η0−aσ , 0, 0, 0) ∈
Γ. It remains to verify that (Λ̃(λ), ϕ) satisfies our Assumptions 4.1 and 4.2: Since
ϕ ∈ C2(R) is a parabola, it is bounded below and its first derivative ϕy grows lin-
early. Moreover, the auxiliary functions κ, κ̃ appearing in our Assumptions 4.1 and
4.2 satisfy for all η ∈ Γ

yκ(η, y) = [− 1
1−λ (η0 − a− ση11)− 1√

1−λa]y2 ≤ − 1√
1−λay

2

and
yκ̃(η, y) = [−(η0 − a) + ση11 − 1√

1−λa]y2 ≤ − 1√
1−λay

2

due to η11 ≤ η0−a
σ and η11,∗ = η0−a

σ . We thus derive Proposition 6.3 as a special case
of Theorem 4.1 and Theorem 4.2.

7 Application to a robust outperformance criterion

Utility maximization is conceptually related to specific numerical representations of
the investor’s preferences. The application requires to know the utility function u
which is by nature subjective. For institutional managers utility maximization thus
creates severe difficulties. On the one hand, the preferences of their customers and
the corresponding numerical representations are not really known exactly. On the
other hand, the individual preferences of the managers and of the various customers
with shares in the same investment fund will typically be different. This suggests
to look for an “intersubjective” criterion for optimal portfolio management which is
acceptable for a large variety of investors. Such an alternative consists in evaluating
the performance of the portfolio relative to a given benchmark such as a stock index.
The investor aims at outperforming the benchmark with maximal probability. If the
benchmark is a contingent claim H at a terminal time T , then the outperformance
problem reduces to maximizing the probability Q[Xπ

T ≥ H] of a successful hedge. This
criterion, known as quantile hedging, has been developed as a substitute for investors
who are not willing or not able to raise the initial costs required by a perfect hedging
or superhedging strategy of H; see, e. g., Föllmer and Leukert [15] and the references
therein.
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Pham [33] proposed an asymptotic benchmark criterion for optimal long term
investment. Here the investor has in mind a level of return c and aims at maximizing
the probability that the portfolio’s growth rate

LπT := 1
T lnXπ

T

(or more generally 1
T ln(Xπ

T /IT ) for an index process I) exceeds this threshold. For
finite T this corresponds to quantile hedging for H = exp(cT ). But what happens in
the long run ? If the growth rates LπT converge Q-a. s. as T ↑ ∞ and satisfy under Q
a large deviations principle with rate function Iπ, then Q[LπT ≥ c] ≈ exp(−Iπ(c)T )
as T ↑ ∞, i. e., the probability that LπT departs from its limiting value decays to zero
exponentially fast. Thus the long term view amounts to minimizing the rates Iπ(c),
or equivalently to

maximizing lim
T↑∞

1
T lnQ[LπT ≥ c] among all π. (105)

An asymptotic benchmark criterion of this form may be of particular interest for
institutional managers with long term horizon, such as mutual fund managers. Note,
however, that this Ansatz does not take into account the size of the shortfall if it does
occur. From a mathematical point of view, it leads to a non-standard large deviations
control problem. On the other hand, standard results from the large deviations theory
(such as the Gärtner-Ellis theorem; see, e. g., [6], Theorem 2.3.6) suggest that the rate
function Iπ is a Fenchel-Legendre transform of the logarithmic moment generating
function

ΛQ(λ, π) := lim
T↑∞

1
T lnEQ[exp(λTLπT )] = lim

T↑∞
1
T lnEQ[(Xπ

T )λ].

In this spirit, Pham developed a duality approach to (105). His Theorem 3.1, relying
on large deviations arguments, but not on the specific structure of the underlying
market model, states that

sup
π

lim
T↑∞

1
T lnQ[LπT ≥ c] = − sup

λ∈(0,λ′)

{λc− ΛQ(λ)}, (106)

where ΛQ(λ) := supπ ΛQ(λ, π) is the optimal growth rate of expected power utility
with respect to Q. Applications of Pham’s theorem to specific market models can be
found in [33], [34], [40], [22], and [20].

However, the benchmark criterion (105) does not account for model ambiguity.
To overcome this limitation, it is natural to study its robust version:

maximize lim
T↑∞

1
T ln inf

Q∈Q
Q[LπT ≥ c] among all π. (107)

The solution is derived in [26], Chapter 6, for the robust stochastic factor model of
Section 2, and it is closely related to the asymptotics of robust utility maximization.
Under suitable regularity assumptions (e. g., Λ ∈ C1((0, 1)) and limλ↑λ′ Λ′(λ) = ∞
for some λ′ ≤ 1) we obtain the duality formula

sup
π∈A

lim
T↑∞

1
T ln inf

Qη∈Q
Qη[LπT ≥ c] = − sup

λ∈(0,λ′)

{λc− Λ(λ)}. (108)

This can be seen as a robust extension of (106), but here the duality formula involves
the optimal growth rates Λ(λ), λ ∈ (0, 1), of robust power utility. Moreover, the
sequence of investment processes π̂c,n, n ∈ N, defined by

π̂c,nt =
{

π∗t (λ[c+ 1/n]) for c > Λ′(0)
π∗t (λ[Λ′(0) + 1/n]) for c ≤ Λ′(0)
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in terms of the optimal long term strategies π∗(λ) for robust power utility and in
terms of parameters λ[c] ∈ argmaxλ∈(0,λ′){λc − Λ(λ)} is nearly optimal for (107).
The proof is beyond the scope of this paper and therefore omitted.

Example 7.1. For the geometric OU model with uncertain mean reversion (see Sub-
section 6.2) Proposition 6.3 shows that:

• Λ(λ) = 1
2 (1−

√
1− λ)a+ λγ with γ := r + 1

2σ2 ( 1
2σ

2 + α− r)2,

• π∗t (λ) = − 1√
1−λ

a
σ2Yt + 1

σ2 ( 1
2σ

2 + α− r), t ≥ 0.

We thus obtain from (108) the optimal rate of exponential decay

sup
π∈A

lim
T↑∞

1
T ln inf

Q∈Q
Q[LπT ≥ c] =

{
− (

a
4−c+γ)2

c−γ for c > a
4 + γ

0 for c ≤ a
4 + γ

.

Since λ[c] = 1− ( a
4(c−γ) )2, the nearly optimal strategies are given by

π̂c,nt =
{
− 4
σ2 (c+ 1

n − γ)Yt + 1
σ2 ( 1

2σ
2 + α− r) for c > a

4 + γ
− 4
σ2 (a4 + 1

n )Yt + 1
σ2 ( 1

2σ
2 + α− r) for c ≤ a

4 + γ
.

Remark 7.1. Another natural problem is to minimize the robust large deviations
probability of downside risk

lim
T↑∞

1
T ln sup

Q∈Q
Q[LπT ≤ c]. (109)

Here the investor is interested in minimizing, in the long run, the worst-case proba-
bility that his portfolio underperforms a bond with interest rate c. In the non-robust
case, this large deviation criterion has been proposed by Pham [33], but a rigorous
solution was given first by Hata, Nagai and Sheu [21] for the special case of a linear
Gaussian factor model. The solution can be derived by a duality approach which, in
contrast to (106) and (108), involves the optimal growth rates Λ(λ) of power utility
with negative parameter λ; cf. Remark 2.1. For a detailed discussion of problem (109)
see [26].

8 Appendix

Let us finally summarize some technicalities.

Lemma 8.1. Let W be a two-dimensional Brownian motion on the stochastic base
(Ω,G,G, Q), and let η be a G-progressively measurable process taking its values in a
compact subset Γ ⊂ Rd. Moreover, let (Yt)t≤T be a continuous process that is a strong
solution of the SDE

dYt = h(ηt, Yt) dt+ σ dWt, Y0 = y0, ‖σ‖ > 0, (110)

where the drift function h : Γ× R→ R satisfies for all η ∈ Γ, y ∈ R

h2(η, y) ≤ K2(1 + y2) for some constant K.

Then there exists δ = δ(T ) > 0 such that supt≤T EQ[exp(δY 2
t )] <∞.
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Proof. The local martingale Bt := ‖σ‖−1σWt, t ∈ [0, T ], satisfies 〈B〉t = t. Thus, B is
a one-dimensional Brownian motion, due to P. Lévy’s characterization. In particular,
the SDE (110) can be rewritten as

dYt = h(ηt, Yt) dt+ ‖σ‖ dBt. (111)

The proof now follows in two steps: First we argue for a constant function h(y) ≡ h.
In that case, the solution to (111) is given by the Gaussian OU process Yt = eht(y0 +∫ t

0
e−hs‖σ‖ dBs), t ∈ [0, T ], and the claim follows easily. In a second step, we extend

this result to the general case by a comparison argument. The details are given in
[29], Theorem 4.7, restricted to the special case h(η, y) = h(y).

Lemma 8.2. Let (Ω,G,G, Q) be a reference probability system supporting a two-
dimensional Brownian motion W = (W 1,W 2), and let η be a G-progressively mea-
surable process with values in a compact subset Γ ⊂ Rd. Furthermore, we suppose that
Y is a strong solution to the SDE (110), where h is real-valued function such that

∃ K,M > 0 ∀ η ∈ Γ : yh(η, y) ≤ −Ky2 +M,

and where the volatility vector satisfies ‖σ‖ > 0. Then it holds that:

i) There exist constants C,Cn > 0, n ∈ N, such that

sup
t≥0

EQ[Y 2n
t ] ≤ y2n

0 + Cn and sup
t≥0

EQ[|Yt|] ≤ C(1 + |y0|).

ii) For all k ∈ R, supt≥0EQ[exp(k|Yt|)] <∞.

In particular, these bounds are uniform among the class of all progressively measurable
Γ-valued processes η.

Proof. The proof is rather standard in ergodic control theory and appears in single
components under slight different assumptions in various papers; see, e. g., [21] or [8].
For a unifying version see [26], Lemma A.2.
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