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Abstract

We study a coherent version of the entropic risk measure, both in the law-
invariant case and in a situation of model ambiguity. In particular, we discuss
its behavior under the pooling of independent risks and its connection with a
classical and a robust large deviations bound.
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1 Introduction
A monetary risk measure specifies the capital which should be added to a given
financial position to make that position acceptable. If the monetary outcome of
a financial position is described by a bounded random variable on some probability
space (Ω,F , P ), then a monetary risk measure is given by a monotone and translation
invariant functional ρ on L∞(Ω,F , P ). In the law-invariant case the value ρ(X) only
depends on the distribution of X under P . Typical examples are Value at Risk (VaR),
Average Value at Risk (AVaR), also called Conditional Value at Risk (CVaR) or Tail
Value at Risk (TVaR), and the entropic risk measure defined by

eγ(X) := 1
γ logEP [e−γX ]

= sup
Q
{EQ[−X]− 1

γH(Q|P )}

for parameters γ ∈ [0,∞), where e0(X) := EP [−X] and H(Q|P ) denotes the relative
entropy of Q with respect to P . VaR is the one which is used most widely, but it has
various deficiencies; in particular it is not convex and may thus penalize a desirable
diversification. AVaR is a coherent risk measure, i. e., convex and also positively
homogeneous. As shown by Kusuoka [13] in the coherent and by Kunze [12] and
Frittelli &Rosazza Gianin [8] in the general convex case, AVaR is a basic building
block for any law-invariant convex risk measure.

The entropic risk measures eγ are convex, and they are additive for independent
positions. From an actuarial point of view, however, this property may not be desir-
able. Indeed, if eγ(X1 + . . .+Xn) is viewed as the total premium for a homogeneous
portfolio of i. i. d. random variables X1, . . . , Xn, then the premium per contract would
simply be eγ(X1), no matter how large n is. Thus the pooling of independent risks
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does not have the effect that the premium per contract decreases to the “fair pre-
mium”, i. e., to the expected loss from a single contract, as the number of contracts
increases.

In this note we focus on a fourth example, namely on a coherent version of the
entropic risk measure defined by

ρc(X) := sup
Q:H(Q|P )≤c

EQ[−X].

In Section 3 we clarify the connection between the coherent entropic risk measures
ρc and the convex entropic risk measures eγ . In Section 4 we show that the capital
requirements computed in terms of ρc have the desired behavior under the pooling
of independent risks X1, . . . , Xn. In fact it turns out that the asymptotic analysis of
ρc(X1+. . .+Xn) simply amounts to a reformulation, in the language of risk measures,
of Cramér’s classical proof of the upper bound for large deviations of the average loss.

In Section 5 we extend the discussion beyond the law-invariant case by taking
model ambiguity into account. Instead of fixing a probability measure P we consider
a whole class P of probabilistic models. We define corresponding robust versions
eP,γ and ρP,c of the entropic risk measures and derive some of their basic properties.
In particular, we show that the pooling of risks has the desired effect if premia are
computed in terms of ρP,c, and that this corresponds to a robust version of Cramér’s
theorem for large deviations.

2 Notation and definitions
Let X be the linear space of bounded measurable functions on some measurable space
(Ω,F). Consider a set A ⊆ X such that ∅ 6= A ∩ R 6= R and

X ∈ A, Y ∈ X, Y ≥ X ⇒ Y ∈ A.

Then the functional ρ : X→ R defined by

ρ(X) := inf{m ∈ R|X +m ∈ A} (1)

is

i) monotone, i. e., ρ(X) ≤ ρ(Y ) if X ≥ Y ,

and

ii) cash-invariant, i. e., ρ(X +m) = ρ(X)−m for X ∈ X and m ∈ R.

Definition 2.1. A functional ρ : X→ R with properties i) and ii) is called a monetary
risk measure.

Any monetary risk measure is of the form (1) with Aρ := {X ∈ X|ρ(X) ≤ 0}.
If X ∈ X is interpreted as the uncertain monetary outcome of a financial position

and A as a class of “acceptable positions”, then ρ(X) can be regarded as a capital
requirement, i. e., as the minimal capital which should be added to the position to
make it acceptable.

Definition 2.2. A monetary risk measure is called a convex risk measure if it is
quasi-convex, i. e.,

ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )}
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for X,Y ∈ X and λ ∈ [0, 1]. In that case Aρ is convex, and this implies that ρ is
a convex functional on X; cf. Föllmer&Schied [7], Proposition 4.6. A convex risk
measure is called coherent if it is positively homogeneous, i. e.,

ρ(λX) = λρ(X)

for X ∈ X and λ ≥ 0.

Remark 2.1. Convex risk measures are closely related to actuarial premium princi-
ples; cf., e. g., Kaas et al. [11]. For example, it is shown in Deprez&Gerber [2], that
a convex premium principle H is of the form H(X) = ρ(−X) for some convex risk
measure ρ if it satisfies the “no rip-off” condition H(X) ≤ supX.

Typically, a convex risk measure admits a robust representation of the form

ρ(X) = sup
Q∈M1

{EQ[−X]− α(Q)}, (2)

whereM1 denotes the class of all probability measures on X, and where the penalty
function α :M1 → (−∞,∞] is defined by

α(Q) := sup
X∈Aρ

EQ[−X];

cf., e. g., Artzner et al. [1], Delbaen [4], Frittelli &Rosazza Gianin [8], and Föllmer
&Schied [7], Chapter 4 for criteria and examples. In the coherent case we have
α(Q) ∈ {0,∞}, and (2) reduces to

ρ(X) = sup
Q∈Q

EQ[−X],

where Q := {Q ∈M1|α(Q) = 0}.
Now suppose that P is a probability measure on (Ω,F) and that ρ(X) = ρ(Y )

if X = Y P -a. s.. Then ρ can be regarded as a convex risk measure on L∞ :=
L∞(Ω,F , P ). In this case the representation (2) holds if ρ is continuous from above,
i. e., ρ(Xn) ↗ ρ(X) whenever Xn decreases to X in X, and M1 can be replaced by
the classM1(P ) := {Q ∈M1|Q� P}.

A monetary risk measure ρ is called law-invariant if ρ(X) only depends on the
distribution of X under the given probability measure P . For a convex risk measure
which is continuous from above, this is the case if and only if the penalty α(Q) of
Q ∈M1(P ) only depends on the law of dQdP under P ; cf., e. g., [7], Theorem 4.54.

A large class of examples arises if acceptability is defined in terms of expected
utility, i. e., if

A = {X ∈ L∞|EP [u(X)] ≥ u(0)}

for some concave increasing function u. In this case the resulting risk measure is
convex and law-invariant, and its penalty function can be computed in terms of the
conjugate function of u; cf. [7], Theorem 4.106.

Let us now take an exponential utility of the form u(x) = 1−e−γx for some γ > 0.
In that case the corresponding risk measure is given by

eγ(X) = 1
γ logEP [e−γX ], X ∈ L∞, (3)

and its robust representation takes the form

eγ(X) = sup
Q∈M1

{EQ[−X]− 1
γH(Q|P )},
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where

H(Q|P ) =
{
EQ[log dQ

dP ] if Q� P
+∞ otherwise

denotes the relative entropy of Q with respect to P .

Definition 2.3. The convex risk measure eγ defined by (3) is called the (convex)
entropic risk measure with parameter γ.

It is easy to see that eγ(X) is increasing in γ and strictly increasing as soon as X
is not constant P -a. s.. Moreover,

lim
γ↓0

eγ(X) = EP [−X] and lim
γ↑∞

eγ(X) = ess sup(−X); (4)

cf., e. g., [11], Theorem 1.3.2.
As noted already by de Finetti [3], the entropic risk measures can be characterized

as the only monetary risk measures ρ which are, up to a change of sign, also a certainty
equivalent, i. e.,

u(−ρ(X)) = EP [u(X)]

for some strictly increasing concave utility function u. In this case the utility function
is exponential, and ρ = eγ for some γ ∈ [0,∞).

The actuarial premium principle H(X) = eγ(−X) corresponding to the entropic
risk measure is usually called the exponential principle; cf. Deprez&Gerber [2] and
Gerber [9].

3 Coherent entropic risk measures

In this section we focus on the following coherent version of an entropic risk measure.

Definition 3.1. For each c > 0, the risk measure ρc defined by

ρc(X) := sup
Q∈M1:H(Q|P )≤c

EQ[−X], X ∈ L∞, (5)

will be called the coherent entropic risk measure at level c.

Clearly, ρc is a coherent risk measure. It is also law-invariant; this follows from
Theorem 4.54 in Föllmer&Schied [7], and also from the representation (8) in Propo-
sition 3.1 below; cf. Corollary 3.1.

For X ∈ L∞ we denote by

QP,X = {Qγ |γ ∈ R} (6)

the exponential family induced by P and −X, i. e.,

dQγ
dP = e−γXEP [e−γX ]−1.

If p(X) := P [X = ess inf X] > 0, then we include as limiting case the measure
Q∞ := limγ↑∞Qγ = P [·|X = ess inf X].

The following proposition shows that the supremum in (5) is attained by some
probability measure in the exponential family QP,X .
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Proposition 3.1. For c ∈ (0,− log p(X)) we have

ρc(X) = max
Q∈M1:H(Q|P )≤c

EQ[−X] = EQγc [−X], (7)

where Qγc ∈ QP,X and γc > 0 is such that H(Qγc |P ) = c, and

ρc(X) = min
γ>0
{ cγ + eγ(X)} = c

γc
+ eγc(X). (8)

If p(X) > 0 and c ≥ − log p(X), then

ρc(X) = EQ∞ [−X] = ess sup(−X). (9)

Proof. We exclude the trivial case, where X is P -a. s. constant.
1) Assume that 0 < c < − log p(X) and take Q such that H(Q|P ) ≤ c. For any

γ > 0 and for Qγ ∈ QP,X ,

H(Q|P ) = H(Q|Qγ) + γEQ[−X]− logEP [e−γX ] (10)

with H(Q|Qγ) ≥ 0 and H(Q|Qγ) = 0 iff Q = Qγ . Thus

EQ[−X] ≤ c
γ + eγ(X), (11)

and

ρc(X) = sup
Q∈M1:H(Q|P )≤c

EQ[−X]

≤ inf
γ>0
{ cγ + eγ(X)}.

Both the supremum and the infimum are attained, and they coincide. Indeed, we can
choose γc > 0 such that H(Qγc |P ) = c, and then we get equality in (11) for Q = Qγ
and γ = γc. Such a γc > 0 exists and is unique. Indeed,

H(Qγ |P ) = γEQγ [−X]− logEp[e−γX ]

is continuous and strictly increasing in γ, and limγ↑∞H(Qγ |P ) = − log p(X) since
limγ↑∞Qγ [Aa] = 1 for Aa := {−X > a} and any a < ess sup(−X).

2) If p(X) > 0, then Q∞ satisfies H(Q∞|P ) = − log p(X) and EQ∞ [−X] =
ess sup(−X). For c ≥ − log p(X) we thus obtain ρc(X) ≥ ess sup(−X), hence (9),
since the converse inequality in (9) is clear.

Remark 3.1. Conversely, the convex entropic risk measure eγ can be expressed in
terms of the coherent entropic risk measures ρc as follows:

eγ(X) = min
c>0
{ρc(X)− c

γ } = ρcγ (X)− cγ
γ ,

where cγ := H(Qγ |P ); this follows immediately from (8).

Remark 3.2. Note that the parameter γc in (7) depends both on c and on X. For a
fixed value γ > 0, the resulting functional

ρ(X) := EP [(−X)e−γX ](EP [e−γX ])−1

is neither coherent nor convex, but the corresponding actuarial premium principle
H(X) = ρ(−X) is well-known as the Esscher principle; cf., e. g., Deprez&Gerber [2].
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Corollary 3.1. The coherent risk measure ρc is law-invariant, continuous from above,
and even continuous from below. Moreover, ρc is increasing in c and satisfies

lim
c↓0

ρc(X) = EP [−X] and lim
c↑∞

ρc(X) = ess sup(−X). (12)

Proof. Law-invariance follows from (8) since each eγ is law-invariant. Continuity from
below follows from (7), i. e., from the representation

ρc(X) = max
Q∈Q

EQ[−X]

with Q = {Q ∈M1|H(Q|P ) ≤ c}; cf. [7], Corollary 4.35. In particular, ρc is continu-
ous from above; cf. [7], Corollary 4.35 together with Theorem 4.31. The convergence
in (12) follows easily from Proposition 3.1. Indeed, (8) implies limc↓0 ρc(X) ≤ eγ(X)
for each γ > 0, hence the first equality in (12), due to (4). As to the second equality,
it is enough to consider the measures Q = P [·|Aa] for the sets Aa := {−X > a} with
a < ess sup(−X).

Let us now compare the coherent entropic risk measures ρc to the familiar risk
measures “Value at Risk” and “Average Value at Risk” defined by

VaRα(X) := inf{m ∈ R|P [X +m < 0] ≤ α}

and
AVaRα(X) := 1

α

∫ α

0

VaRλ(X) dλ ≥ VaRα(X)

for any α ∈ (0, 1). Recall that VaRα is a monetary risk measure which is positively
homogeneous but not convex, while AVaRα is a coherent risk measure which can also
be written as

AVaRα(X) = 1
αEP [(qα −X)+]− qα

for any α-quantile qα of X; cf., e. g., [7], Section 4.4. Note also that VaRα(X) is
decreasing and right-continuous in α with left limits

VaRα−(X) := inf{m ∈ R|P [X +m ≤ 0] ≤ α}.

Proposition 3.2. For any α ∈ (0, 1) and any X ∈ L∞,

VaRα(X) ≤ VaRα−(X) ≤ AVaRα(X) ≤ ρc(α)(X), (13)

where c(α) := − logα > 0.

Proof. Clearly, we have VaRα(X) ≤ VaRα−(X) ≤ AVaRα(X). In view of Corollary
3.1 it is enough to verify the inequality VaRα(X) ≤ ρc(α)(X), since AVaRα is the
smallest law-invariant coherent risk measure which is continuous from above and
dominates VaRα; cf. [7], Theorem 4.61. For any γ > 0,

P [X +m ≤ 0] ≤ e−γmEP [e−γX ],

and the right-hand side is ≤ α if −γm+ logEP [e−γX ] ≤ logα, i. e., if

m ≥ c(α)
γ + eγ(X).

Thus, by Proposition 3.1,

VaRα−(X) ≤ inf
γ>0
{ c(α)

γ + eγ(X)} = ρc(α)(X).
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Alternatively, we can check directly the last inequality in (13), using the robust re-
presentation

AVaRα(X) = max
Q∈Qα

EQ[−X]

with Qα := {Q ∈ M1|Q � P, dQdP ≤
1
α}; cf. [7], Lemma 4.46 and Theorem 4.47.

Indeed, any Q ∈ Qα satisfies log dQ
dP ≤ c(α), hence H(Q|P ) ≤ c(α).

4 Capital requirements for i. i. d. portfolios
Consider a homogeneous portfolio of n insurance contracts whose uncertain out-
comes are described as i. i. d. random variables X1, . . . , Xn on some probability space
(Ω,F , P ). Let µ denote the distribution of X1 under P . To keep this exposition sim-
ple, we assume that µ is non-degenerate and has bounded support; in fact it would
be enough to require finite exponential moments

∫
e−γx µ(dx) for any γ ∈ R.

If ρ is a monetary risk measure, then ρ(X1 + . . . + Xn) can be viewed as the
smallest monetary amount which should be added to make the portfolio acceptable.
This suggests to equate ρ(X1 + . . .+Xn) with the portfolio’s total premium, and to
use the fraction

πn = 1
nρ(X1 + . . .+Xn)

as a premium for each individual contract Xi, i = 1, . . . , n.
For any γ > 0, the entropic risk measure eγ satisfies

eγ(X1 + . . .+Xn) = neγ(X1).

If eγ is used to calculate the premium πn, it yields

πn = 1
neγ(X1 + . . .+Xn) = eγ(X1) > EP [−X1].

Thus the exponential premium principle based on the convex entropic risk measure
does not have the desirable property that the “risk premium” πn−EP [−X1] decreases
to 0 as n tends to ∞; cf., e. g., [16], Example 12.5.1 and Remark 12.5.2.

For the coherent risk measure ρc, however, the pooling of risks does have the
desired effect.

Corollary 4.1. The premium

πc,n := 1
nρc(X1 + . . .+Xn) (14)

computed in terms of the coherent entropic risk measure ρc satisfies πc,n > EP [−X1]
and

lim
n↑∞

πc,n = EP [−X1].

Proof. In view of (4) we can choose for any ε > 0 some δ > 0 such that eδ(X1) ≤
EP [−X1] + ε. Thus, by (8),

πc,n = 1
n inf
γ>0
{ cγ + eγ(X1 + . . .+Xn)}

= inf
γ>0
{ c
γn + eγ(X1)}

≤ c
δn + EP [−X1] + ε,

hence limn↑∞ πc,n ≤ EP [−X1]. Since πc,n ≥ EP [−X1], the conclusion follows. In fact
we have πc,n > EP [−X1] since the distribution µ of X1 is non-degenerate.
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Let us now describe the decay of the risk premium πc,n−EP [−X1] more precisely.
Note that for any Qγ ∈ QP,X1+...+Xn we have

dQγ
dP = e−γ

Pn
i=1Xi(EP [e−γX1 ])−n

and
H(Qγ |P ) = nH(µγ |µ),

where µγ is the distribution on R with density

dµγ
dµ (x) := e−γx(

∫
e−γx µ(dx))−1,

mean m(γ) :=
∫

(−x)µγ(dx), and variance σ2(γ) :=
∫

(x+m(γ))2 µγ(dx). We denote
by σ2

P (X1) := σ2(0) the variance of X1 under P .

Proposition 4.1. For a given level c > 0, the premium πc,n defined by (14) is given
by πc,n = m(γc,n), where γc,n is such that H(µγc,n |µ) = c

n , and we have

lim
n↑∞

√
n(πc,n − EP [−X1]) =

√
2c σP (X1).

Proof. Recall from Proposition 3.1 that

ρc(X1 + . . .+Xn) = EQγc,n [−(X1 + . . .+Xn)],

where Qγc,n ∈ QP,X1+...+Xn , and where the parameter γc,n > 0 is taken such that
H(Qγc,n |P ) = c. Thus,

c = H(Qγc,n |P ) = nH(µγc,n |µ), (15)

and the individual premium πc,n can be rewritten as

πc,n = 1
nρc(X1 + . . .+Xn) = m(γc,n). (16)

The smooth function f defined by f(γ) := logEP [e−γX1 ] = log
∫
e−γx µ(dx) satisfies

f ′(γ) = m(γ) and f ′′(γ) = σ2(γ), and so we have

H(µγ |µ) = γm(γ)− f(γ) = 1
2f
′′(γ̃)γ2

for some γ̃ ∈ [0, γ]. The condition

c
n = H(µγc,n |µ) = 1

2f
′′(γ̃c,n)γ2

c,n

clearly implies limn↑∞ γc,n = 0, hence

lim
n↑∞

nγ2
c,n = 2c(f ′′(0))−1. (17)

Since

f(γc,n) = f(0) + f ′(0)γc,n + 1
2f
′′(γ̂c,n)γ2

c,n

= m(0)γc,n + 1
2f
′′(γ̂c,n)γ2

c,n

for some γ̂c,n ∈ [0, γc,n], we have

πc,n = m(γc,n) = 1
γc,n

(H(µγc,n |µ) + f(γc,n))

= 1
γc,n

( cn +m(0)γc,n + 1
2f
′′(γ̂c,n)γ2

c,n).
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Due to (17), we finally obtain

lim
n↑∞

√
n(πc,n − EP [−X1]) = lim

n↑∞
c√
nγc,n

(
1 + 1

2f
′′(γ̂c,n)γ

2
c,nn

c

)
=
√

2c σP (X1).

Let us now fix a premium π such that EP [−X1] < π < ess sup(−X1), and let us
determine the maximal tolerance level

cπ,n := max{c > 0| 1nρc(X1 + . . .+Xn) ≤ π}

at which the portfolio X1, . . . , Xn is made acceptable by the total premium nπ.

Corollary 4.2. Take γ(π) > 0 such that m(γ(π)) = π. Then

cπ,n = nH(µγ(π)|µ).

Proof. At level cπ,n we have

1
nρcπ,n(X1 + . . .+Xn) = m(γ(π)).

In view of (15) and (16) this is the case iff

cπ,n = nH(µγ(π)|µ).

Remark 4.1. Due to (13), Corollary 4.2 implies

VaRαπ,n−(X1 + . . .+Xn) ≤ nπ

for απ,n := exp(−cπ,n). But this translates into

P [− 1
n (X1 + . . .+Xn) ≥ π] ≤ απ,n,

and so we obtain

1
n logP [− 1

n (X1 + . . .+Xn) ≥ π] ≤ − cπ,nn = −H(µγ(π)|µ).

In other words, the combination of Corollary 4.2 with the estimate (13) simply amounts
to a reformulation, in the language of risk measures, of the classical proof of Cramér’s
upper bound for the large deviations of the averages − 1

n (X1 + . . . + Xn); see, e. g.,
Dembo&Zeitouni [5].

5 Model ambiguity and robust large deviations
So far we have fixed a probability measure P which is assumed to be known. Let us
now consider a situation of model ambiguity where P is replaced by a whole class P
of probability measures on (Ω,F).

Assumption 5.1. We assume that all measures P ∈ P are equivalent to some refer-
ence measure R on (Ω,F), and that the family of densities

ΦP := {dPdR |P ∈ P}

is convex and weakly compact in L1(R).
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For a probability measure Q on (Ω,F), the extent to which it differs from the
measures in the class P will be measured by the relative entropy of Q with respect to
the class P, defined as

H(Q|P) := inf
P∈P

H(Q|P ).

Our assumption implies that for each Q such thatH(Q|P) <∞ there is a unique mea-
sure PQ ∈ P, called the reverse entropic projection of Q on P, such that H(Q|PQ) =
H(Q|P); cf. [6], Remark 2.10 and Proposition 2.14.

Let us denote byM1(R) the class of all probability measures on (Ω,F) which are
absolutely continuous with respect to R. From now on we write L∞ = L∞(Ω,F , R);
note that L∞ ⊆ L∞(Ω,F , P ) for any P ∈M1(R). We also use the notation eP,γ and
ρP,c for the convex and the coherent entropic risk measures defined in terms of the
specific measure P .

In this context of model ambiguity, we define the robust version eP,γ of the (con-
vex) entropic risk measure by

eP,γ(X) := sup
P∈P

eP,γ(X) = 1
γ sup
P∈P

logEP [e−γX ], X ∈ L∞.

Assumption 5.1 implies that the supremum is actually attained. Clearly, eP,γ is again
a convex risk measure, and its robust representation takes the form

eP,γ(X) = sup
Q∈M1

{EQ[−X]− 1
γH(Q|P)}, X ∈ L∞.

Lemma 5.1. We have
eP,γ(X) ≥ max

P∈P
EP [−X],

and eP,γ(X) is increasing in γ with

lim
γ↓0

eP,γ(X) = max
P∈P

EP [−X]. (18)

Proof. The functions
fγ(ϕP ) := eP,γ(X)− EP [−X]

with ϕP := dP
dR are weakly continuous on ΦP and they decrease pointwise to 0, due

to (4). Since ΦP is weakly compact, the convergence is uniform by Dini’s lemma,
and this implies (18). Note that the maximum in (18) is actually attained since
ϕP 7→ ER[(−X)ϕP ] is continuous on the weakly compact set ΦP .

From now on we focus on the robust extension ρP,c of the coherent entropic risk
measure defined by

ρP,c(X) := sup
Q∈M1:H(Q|P)≤c

EQ[−X] (19)

for any X ∈ L∞.

Lemma 5.2. The supremum in (19) is attained, i. e., for any X ∈ L∞ there is a
pair (Qc, Pc) ∈M1(R)× P such that H(Qc|Pc) ≤ c and

ρP,c(X) = EQc [−X].

In particular,
ρP,c(X) = max

P∈P
ρP,c(X) ≥ max

P∈P
EP [−X]. (20)
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Proof. Since any Q such that H(Q|P) < ∞ admits a reverse entropic projection
PQ ∈ P, we can write

ρP,c(X) = sup
Q∈M1(R):H(Q|P)≤c

EQ[−X]

= sup
Q∈M1(R),P∈P:H(Q|P )≤c

EQ[−X]

= sup
(ϕ,ψ)∈Cc

ER[(−X)ϕ],

where we define
Cc := {(ϕ,ψ) ∈ Φ× ΦP |ER[h(ϕ,ψ)] ≤ c}

with Φ := {dQdP |Q ∈ M1(R)} and h(x, y) := x log x
y for y > 0 and x ≥ 0, h(0, 0) :=

0, and h(x, 0) = ∞ for x > 0. The functional F (ϕ,ψ) := ER[(−X)ϕ] is weakly
continuous on Φ × ΦP , and the set Cc is weakly compact in L1(R) × L1(R); cf. the
proof of Lemma 2.9 in Föllmer&Gundel [6]. This shows that the supremum in (19)
is actually attained and that (20) holds.

Recall that for X ∈ L∞ and P ∈ P we denote by QP,X the exponential family
introduced in (6).

Proposition 5.1. For

c < − log max
P∈P

P [X = ess inf X]

we have

ρP,c(X) = max
P∈P

min
γ>0
{ cγ + eP,γ(X)}

= c
γc

+ ePc,γc(X)

= EQc [−X],

where Qc denotes the measure in the exponential family QPc,X with parameter γc, and
γc > 0 is such that

H(Qc|P) = H(Qc|Pc) = c. (21)

If c ≥ − log maxP∈P P [X = ess inf X], then

ρP,c(X) = ess sup(−X). (22)

Proof. 1) If c ≥ − logP [X = ess inf X] for some P ∈ P, then ρP,c(X) = ess sup(−X)
due to Proposition 3.1, and this implies (22).

2) The proof of Lemma 5.2 shows that for any X ∈ L∞ there exists a pair
(Qc, Pc) ∈M1(R)× P such that H(Qc|Pc) ≤ c and

ρP,c(X) = EQc [−X].

Let us first show thatQc belongs to the exponential familyQPc,X , and thatH(Qc|Pc) =
c. To this end, we take γc > 0 such that H(QPc,γc |Pc) = c, and we show that
Qc = QPc,γc . Indeed, QPc,γc satisfies the constraint

H(QPc,γc |P) ≤ H(QPc,γc |Pc) = c,

11



and as in the proof of Proposition 3.1 we see that

EQc [−X] =
H(Qc|Pc)−H(Qc|QPc,γc)

γc
+ ePc,γc(X)

≤ c
γc

+ ePc,γc(X)

= EQPc,γc [−X].

But EQc [−X] is maximal under the constraint H(Q|P) ≤ c, and so we must have
equality. This implies H(Qc|QPc,γc) = 0, hence Qc = QPc,γc and H(Qc|Pc) =
H(QPc,γc |Pc) = c.

3) We have
ρP,c(X) = ρPc,c(X) = sup

Q:H(Q|Pc)≤c
EQ[−X].

Indeed, “≤” is clear since Pc ∈ P. Conversely, if H(Q|P) ≤ c then, since Qc ∈ QPc,X
and H(Qc|Pc) = c, Proposition 3.1 implies

EQ[−X] ≤ EQc [−X] = ρPc,c(X),

and this yields “≤”.
4) In view of 2) and Proposition 3.1, we have

sup
Q:H(Q|P)≤c

EQ[−X] = ρP,c(X) = sup
P∈P

ρP,c(X)

= sup
P∈P

inf
γ>0
{ cγ + eP,γ(X)}.

The argument in part 1) shows that the second and the third supremum are attained
by P = Pc, the first by Q = Qc, and the infimum by γ = γc.

5) If (21) does not hold, then we have H(Qc|P ) < c for some P ∈ P. But then
the proof of Proposition 3.1 shows that there exists some Q such that H(Q|P) ≤
H(Q|P ) = c and EQ[−X] > EQc [−X], contradicting the definition of Qc.

Corollary 5.1. The robust versions

VaRP,α(X) := sup
P∈P

VaRP,α(X) = inf{m ∈ R| sup
P∈P

P [X +m < 0] ≤ α},

VaRP,α−(X) := sup
P∈P

VaRP,α−(X) = inf{m ∈ R| sup
P∈P

P [X +m ≤ 0] ≤ α},

and
AVaRP,α(X) := sup

P∈P
AVaRP,α(X)

of Value at Risk and Average Value at Risk with respect to the class of prior models
P satisfy

VaRP,α(X) ≤ VaRP,α−(X) ≤ AVaRP,α(X) ≤ ρP,c(α)(X) (23)

with c(α) := − logα > 0.

Proof. This follows from Proposition 5.1 and Proposition 3.2.

Let us now look at the asymptotic behavior of the robust premium

πc,n := 1
nρP,c(X1 + . . .+Xn) (24)

for a portfolio which satisfies the following

12



Assumption 5.2. For any P ∈ P, the random variables X1, . . . , Xn are i. i. d. and
non-degenerate under P .

Thus, model ambiguity only appears in the multiplicity of the distributions µP of
X1 under the various measures P ∈ P. As in Section 4 we assume for simplicity that
X1 belongs to L∞.

Corollary 5.2. The robust premium πc,n defined by (24) satisfies

πc,n ≥ max
P∈P

EP [−X1]

and
lim
n↑∞

πc,n = max
P∈P

EP [−X1]. (25)

Proof. Due to (18) we can choose δ > 0 such that

eP,δ(X1) ≤ max
P∈P

EP [−X1] + ε

for a given ε > 0. In analogy to the proof of Corollary 4.1, Proposition 5.1 yields the
estimate

πc,n ≤ c
δn + max

P∈P
EP [−X1] + ε,

and this implies (25).

Remark 5.1. While the pooling of risks has the desired effect if premiums are com-
puted in terms of ρP,c, this is not the case if we use the robust version eP,γ of the
convex entropic risk version. Indeed, it is easy to check that the above homogeneity
Assumption 5.2 implies

eP,γ(X1 + . . .+Xn) = neP,γ(X1).

We conclude with the robust extension of Corollary 4.2 and Remark 4.1.

Proposition 5.2. For a fixed premium π such that

max
P∈P

EP [−X1] < π < ess sup(−X1),

the corresponding tolerance level

cπ,n := max{c > 0| 1nρP,c(X1 + . . .+Xn) ≤ π} (26)

is given by
cπ,n = nIP(π) = nΛ∗P(π), (27)

where
IP(π) := min

Q:EQ[−X1]=π
H(Q|P) (28)

and
Λ∗P(π) = sup

γ>0
{γπ − sup

P∈P
logEP [e−γX1 ]}. (29)

In particular, IP coincides with the convex conjugate Λ∗P of the convex function ΛP
defined by

ΛP(γ) := sup
P∈P

logEP [e−γX1 ], γ > 0.

13



Proof. 1) Let us first show the identity IP = Λ∗P . Indeed, for any Q ∈M1 such that
EQ[−X1] ≥ π, for any P ∈ P, and for any γ > 0, (10) implies

H(Q|P ) ≥ γπ − logEP [e−γX1 ]

with equality iff Q = Qγ ∈ QP,X and γ > 0 is such that EQγ [−X] = π. This yields
the classical identity

IP (π) := min
Q:EQ[−X1]=π

H(Q|P ) = Λ∗P (π),

where Λ∗P denotes the convex conjugate of the convex function ΛP defined by ΛP (γ) :=
logEP [e−γX1 ]; cf., e. g., [7], Theorem 3.28. Thus

IP(π) = min
Q:EQ[−X1]=π

H(Q|P) = inf
P∈P

min
Q:EQ[−X1]=π

H(Q|P )

= inf
P∈P

Λ∗P (π).

In order to identify the right-hand side with Λ∗P(π), we apply a minimax theorem,
for example Terkelsen [17], Corollary 2, to the function f on ΦP × (0,∞) defined by
f(dPdR , γ) = γπ − logER[e−γX1 dP

dR ]. This yields

inf
P∈P

Λ∗P (π) = inf
P∈P

sup
γ>0
{γπ − ΛP (γ)} = sup

γ>0
inf
P∈P
{γπ − ΛP (γ)}

= sup
γ>0
{γπ − ΛP(γ)}

= Λ∗P(π),

hence IP(π) = Λ∗P(π).
2) In order to verify the first equality in (27), recall from Proposition 5.1 that

1
nρP,c(X1 + . . .+Xn) = 1

nEQc [−
n∑
i=1

Xi] = EQc [−X1],

where Qc := Qγc ∈ QPc,X1+...+Xn and γc is such that c = H(Qc|Pc) = H(Qc|P). Our
assumptions imply that ρP,c(X1 + . . . + Xn) is strictly increasing and continuous in
c. Thus the tolerance level cπ,n is determined by

1
nρP,cπ,n(X1 + . . .+Xn) = π,

i. e., by the two conditions

cπ,n = H(Qcπ,n |P) = H(Qcπ,n |Pcπ,n) and EQcπ,n [−X1] = π.

Using part 1), we thus see that

cπ,n = inf
P∈P

H(Qcπ,n |P ) = inf
P∈P
{EQcπ,n [−γcπ,n

n∑
i=1

Xi]− n logEP [exp(−γcπ,nX1)]}

= n inf
P∈P
{γcπ,nπ − logEP [exp(−γcπ,nX1)]}

= n(γcπ,nπ − log sup
P∈P

EP [exp(−γcπ,nX1)])

≤ nΛ∗P(π) = nIP(π).

14



On the other hand, the same arguments applied to Pcπ,n yield

cπ,n = H(Qcπ,n |Pcπ,n) = n(γcπ,nπ − logEPcπ,n [exp(−γcπ,nX1)])

= n sup
γ>0
{γπ − logEPcπ,n [e−γX1 ]}

= nIPcπ,n (π)

≥ nIP(π)

since the supremum in the second line is attained by γ = γcπ,n .

As in Remark 4.1, (27) translates into the upper bound of the following extension
of Cramér’s theorem to our present context of model ambiguity. For related results on
robust large deviations we refer to Sadowsky [15], Pandit&Meyn [14], and Hu [10].

Corollary 5.3. For any π > maxP∈P EP [−X1] we have

1
n log( sup

P∈P
P [− 1

n (X1 + . . .+Xn) ≥ π]) ≤ −IP(π),

and
lim
n↑∞

1
n log( sup

P∈P
P [− 1

n (X1 + . . .+Xn) > π]) = −IP(π), (30)

where the rate function IP is given by (28) and coincides with (29).

Proof. For απ,n := exp(−cπ,n), (23) and (26) imply

VaRP,απ,n−(X1 + . . .+Xn) ≤ ρP,cπ,n(X1 + . . .+Xn) ≤ nπ,

i. e.,
sup
P∈P

P [X1 + . . .+Xn + nπ ≤ 0] ≤ απ,n,

hence
1
n log( sup

P∈P
P [− 1

n (X1 + . . .+Xn) ≥ π]) ≤ −IP(π).

In order to verify (30), simply recall that Cramér’s theorem yields

lim
n↑∞

1
n logP [− 1

n (X1 + . . .+Xn) > π] ≥ − min
Q:EQ[−X1]=π

H(Q|P )

for any P ∈ P, hence

lim
n↑∞

1
n log( sup

P∈P
P [− 1

n (X1 + . . .+Xn) > π]) ≥ sup
P∈P

(− min
Q:EQ[−X1]=π

H(Q|P ))

= − min
Q:EQ[−X1]=π

H(Q|P)

= −IP(π).
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