Regime Switching Rough Heston Model

With Mesias Alfeus, University of Wollongong, Erik Schloegl, UTS Sydney

Ludger Overbeck, University of Giessen, Germany
Outline

1 Introduction
 Stochastic Volatility Modeling
 Related literature
 Methodology

2 Methods
 Model Description
 Valuation Formulae

3 Results
 Model Parameters
 Numerical Results

4 Conclusion
1 Introduction
 Stochastic Volatility Modeling
 Related literature
 Methodology

2 Methods
 Model Description
 Valuation Formulae

3 Results
 Model Parameters
 Numerical Results

4 Conclusion
Motivations & Stylized Facts

(a) Observed volatility regimes

(b) Log return–realized vol

(c) BM sample paths

(d) Rough paths
Stochastic Volatility Modeling

- Fix the time horizon \([0, T]\) and assume the usual filtered probability space
 \((\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{0 \leq t \leq T})\).
- The most common stochastic volatility model is the Heston [1993] (under \(\mathbb{Q}\)) defined as follows:
 \[
 \begin{align*}
 dS_t &= rS_t dt + S_t \sqrt{V_t} dB_t \\
 dV_t &= \kappa (\theta - V_t) dt + \sigma \sqrt{V_t} dW_t,
 \end{align*}
 \]
 (1)
 - with \(\langle dB_t, dW_t \rangle = \rho dt\).
 - In this formulation, leverage effects and mean-reverting property of volatility are both captured.
 \[2\kappa \theta \geq \sigma^2 \Rightarrow \mathbb{P} \left(\exists t \in [0, T] \text{ with } V_t = 0 \right) = 0. \text{ a.s.}\]
1 Introduction
 Stochastic Volatility Modeling
 Related literature
 Methodology

2 Methods
 Model Description
 Valuation Formulae

3 Results
 Model Parameters
 Numerical Results

4 Conclusion
Regimes In Volatility

- Derman [1999] empirically proved that the term structure of implied volatility has regimes.
- Maghrebi et al. [2014] statistically showed that a model should have at least two regimes under the pricing measure.
- Elliott et al. [2016] considered only $\theta(t)$ modulated by a Markov chain (Z_t) with n-possible states:

$$\theta_t = \{\bar{\theta}^1, \bar{\theta}^2, \cdots, \bar{\theta}^n\},$$

- with transition rate matrix:

$$\Gamma = (\gamma_{i,j})_{i,j=1}^n$$

- where:

$$\text{for all } i \neq j \gamma_{i,j} \Delta t = \mathbb{P}(\theta_{t+\Delta t} = \bar{\theta}^j | \theta_t = \theta_i)$$

- Elliott and his coauthors proved that Markov Switching SV better fit implied vol while preserving analytical tractability.
And Volatility Is Rough

- Recently Gatheral et al. [2018] discovered a universal phenomenon that volatility is rough.
- These observations led to application of fBM processes. This goes back to the framework of Comte and Renault [1998].
- Consider Mandelbrot and Van Ness [1968] representation for the fBm:

\[
W_t^H = \frac{1}{\Gamma (H + \frac{1}{2})} \int_0^t \frac{1}{(t-s)^{\frac{1}{2}-H}} dW_s + \frac{1}{\Gamma (H + \frac{1}{2})} \int_{-\infty}^0 \left[\frac{1}{(t-s)^{\frac{1}{2}-H}} - \frac{1}{(-s)^{\frac{1}{2}-H}} \right] dW_s, \quad H \in (0, 1].
\]

(2)
- For all \(\epsilon > 0 \), and \(H \) very small, the fractional kernel

\[
\frac{1}{(t-s)^{\frac{1}{2}-H}}
\]

is behind the \(H - \epsilon \) Hölder regularity of volatility [Euch and Rosenbaum, 2017].
Volatility Is Rough Indeed

- There is a literature that develops models that can cope with this feature observed in the data.
- There is a bulk of literature out there, e.g. Gatheral et al. [2018], Bayer et al. [2016], [Euch and Rosenbaum, 2016, 2017], Fukasawa [2017], Alfeus et al. [2017], and Callegaro et al. [2018]
- https://sites.google.com/site/roughvol/home/risks-1
- Key papers ↪ Euch and Rosenbaum [2016, 2017]
The Rough framework introduces roughness paths in the volatility process of Heston model - Roughening Heston.

Let \(X_t = \log S_t \).

The Rough Heston model (under \(\mathbb{Q} \)) is given by:

\[
\begin{align*}
 dX_t &= (r - V_t/2)dt + \sqrt{V_t}dB_t \\
 V_t &= V_0 + \frac{\kappa}{\Gamma(\alpha)}\int_0^t (t-s)^{\alpha-1}(\theta - V_s)dt + \frac{\sigma}{\Gamma(\alpha)}\int_0^t (t-s)^{\alpha-1}\sqrt{V_s}dW_s
\end{align*}
\]

\[\alpha = \frac{1}{2} + H \in (0.5, 1).\]

Intricate issues

- (3) is neither Markovian nor a semi-martingale

\[\alpha = \frac{1}{2} + H \in (0.5, 1).\]
Euch and Rosenbaum [2016] Framework II

- El Euch and Rosenbaum construct the solution of this process by passing this through a scaling limit of a sequences of Hawkes processes.
- A useful description of its law is found by going through fractional calculus.
- They derived explicit form for the characteristic function in exponential affine expression.
- This was made possible mainly due to the scaling limit of the Hawkes processes
- This model is proven to capture the both the behaviour of Historical and implied volatility.
Introduction

Stochastic Volatility Modeling
Related literature
Methodology

Methods

Model Description
Valuation Formulae

Results

Model Parameters
Numerical Results

Conclusion
Our approach

• To extend the arguments from Euch and Rosenbaum [2016] as well as from Elliott et al. [2016]

• To build unified and consistent framework that capture two important stylized features of volatility:
 • The rough behaviour in its local behaviour
 • The regime switching property consistent with more long term economic consideration

• We derive an analytic representation of the Laplace-functional of the asset price.

• We benchmark these semi-analytic prices against two types of Monte-Carlo-simulations:
 1. One is a full Monte-Carlo simulation, in which the three dimensional stochastic processes \((B, W, \theta)\).
 2. a novel method in this context, is the partial Monte-Carlo-Simulation. Here we simulate the path of \(\theta_s(\omega), s \in [0, T]\) and then solve the corresponding rough Riccati equation.
1 Introduction
 Stochastic Volatility Modeling
 Related literature
 Methodology

2 Methods
 Model Description
 Valuation Formulae

3 Results
 Model Parameters
 Numerical Results

4 Conclusion
Fixed function $s \rightarrow \theta_s$

- The Rough volatility framework in Equation (3) now becomes

$$
\begin{align*}
\frac{dX_t}{dt} &= (r - V_t/2)dt + \sqrt{V_t}dB_t \\
V_t &= V_0 + \frac{\kappa}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha-1}(\theta(s) - V_s)dt + \frac{\sigma}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha-1}\sqrt{V_s}dW_s.
\end{align*}
$$

If

$$
\forall \epsilon > 0 \exists C_\epsilon > 0; \forall u \in (0, T]; |\theta(u)| \leq C_\epsilon u^{-\frac{1}{2}-\epsilon},
$$

then there is a weak non-negative solution exhibiting $H - \epsilon$ Hölder regularity.
Regime switching θ_s

- To incorporate regime switching into the mean reversion level θ as in Elliott et al. [2016], we define a finite-state time homogeneous Markov process

$$\theta_s(\omega) = \sum_{i=1}^{k} \vartheta_i Z_s^{(i)}(\omega) = \langle \vartheta, Z_s \rangle,$$

with generator matrix Q and where Z is a Markov chain, independent from (S, V) with state space the set of unit vectors in \mathbb{R}^k, i.e. $Z_s \in \{e_i = (0, \ldots, 1, 0, \ldots)^T, i = 1, \ldots, k\}$ and ϑ is the vector of k-different mean reversion levels.

- The dynamics of Z_t is given by

$$dZ_t = Q' Z_t dt + dM_t$$ (5)
Theorem

Let $\varphi_{X_T}(u; V_0, Z_0, X_0)$ be the characteristic function of X_T. The following expression holds:

$$\varphi_{X_T}(u) = E[e^{iuX_T}] = E\left[\exp\left(\kappa \int_0^T h(u, T-s)\langle \vartheta, Z_s \rangle ds\right)\right] e^{\int_0^T h(u, s) \frac{V_0 s^{-\alpha}}{\Gamma(1-\alpha)} ds}. \quad (6)$$

where h is the unique solution of the following fractional Riccati equation:

$$D^\alpha h = \frac{1}{2}(-u^2 - iu) + (iu\rho\sigma - \kappa)h(u, s) + \frac{\sigma^2}{2} h^2(u, s), s < t, u \in \mathbb{C}, \quad (7)$$

$$I^{1-\alpha} h(u, 0) = 0.$$

Here the Riemann-Liouville fractional differentiation and integral are defined by

$$D^\alpha h(u, s) = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} h(u, s) ds, \quad I^\alpha h(u, s) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} h(u, s) ds.$$
Computation of the Characteristic Function I

• The computational complexity:

\[
E[e^{iuXT}] = E\left[\exp \left(\kappa \int_0^T h(u, T-s)\langle \vartheta, Z_s \rangle ds\right)\right] \left(\begin{array}{c}
E^\left(\begin{array}{c}
\exp \left(\kappa \int_0^T h(u, T-s)\langle \vartheta, Z_s \rangle ds\right)\right)
\end{array}\right)^{(b)}
\right)
\]

\[e^{\int_0^T h(u, T-s)\frac{V_0 s^{-\alpha}}{\Gamma(1-\alpha)} ds}. \quad (8)\]

• The fractional differential Ricatti equation is solved using a predictor-corrector approach (Adams schemes)
• A new technology based on hybrid schemes is introduced by Callegaro et al. [2018]
• Diethelm et al. [2004] presents a numerical algorithm for evaluating the fractional integral (b).
The computation of the expectation \((a)\) in (8):

- Fix \(T\). Let

\[
g_t = \exp \left(\kappa \int_0^t h(u, T-s) \langle \vartheta, Z_s \rangle \, ds \right), \quad 0 < t \leq T
\]

\((9) \)

\[
G_t := g_t Z_t.
\]

\((10) \)

- Then

\[
dG_t = g_t dZ_t + Z_t dg_t
\]

\((11) \)

\[
= g_t (Q' Z_t dt + dM_t) + Z_t g_t \kappa h(u, T-t) \langle \vartheta, Z_t \rangle dt
\]

\[
= (Q' + \kappa h(u, T-t) \Theta) g_t Z_t dt + g_t dM_t
\]

- Consider

\[
\hat{G}_t = \mathbb{E}[G_t | Z_0 = Z] = \Phi(s,t) Z.
\]
Matrix ODE

• Along the lines of Elliott et al. [2016], we showed that since

$$\mathbb{E}[G_t] = \langle \hat{G}_t, 1 \rangle$$

• Then

$$E \left[\exp \left(\kappa \int_0^T h(u, T - s) \langle \vartheta, Z_s \rangle \, ds \right) \right] = \langle \Phi(0, T)Z_0, 1 \rangle,$$

• where Φ is a solution of the matrix ODE given by

$$\frac{d\Phi(s, t)}{dt} = \left(Q' + \kappa h(u, T - t) \Theta \right) \Phi(s, t), \ s \leq t, \ \text{with} \ \Phi(s, s) = I, \quad (12)$$

• where $\Theta = \text{diag}[\vartheta]$.
Introduction
Stochastic Volatility Modeling
Related literature
Methodology

Methods
Model Description
Valuation Formulae

Results
Model Parameters
Numerical Results

Conclusion
Semi-Analytic Pricing Formula

- To price options, we use the well-known Fourier-inversion formula of Gil-Pelaez [1951] which leads to a semi-analytic closed-form solution given by:

\[C_0 = e^{-rT} \mathbb{E} [(e^X - K)^+] = \mathbb{E}[e^X] \Pi_1 - e^{-rT} K \Pi_2, \tag{13} \]

where the probability quantities \(\Pi_1 \) and \(\Pi_2 \) are given by:

\[
\Pi_1 = \frac{\mathbb{E}[e^X \mathbb{I}_{\{e^X > K\}}]}{\mathbb{E}[e^X]} = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \text{Re} \left[\frac{e^{-iu \log(K)} \varphi_X(u - i)}{iu \varphi_X(-i)} \right] dz \tag{14}
\]

\[
\Pi_2 = \mathbb{P}\{e^X > K\} = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \text{Re} \left[\frac{e^{-iu \log(K)} \varphi_X(u)}{iu} \right] dz.
\]
Monte Carlo Approaches

- Two Monte Carlo simulations have been implemented:
 1. Full Monte Carlo
 - We first simulate the 3-dimensional process (B, W, θ).
 - The option pay-out can be obtained (in the risk neutral world) in each simulation.
 2. Partial Monte Carlo
 - This is a novel method in this context
 - We simulate the paths of θ_s and then evaluate for each realization $\theta_s(\omega)$, the formula (8), i.e., for $l = 1, 2, \ldots, N$

$$E[e^{iuX_t}](\omega_l) = \exp \left(\int_0^t h(u, T - s) \left(\kappa \theta_s(\omega_l) + \frac{V_0 s^{-\alpha}}{\Gamma(1 - \alpha)} \right) ds \right), \quad (15)$$

- Then

$$E[e^{iuX_t}] \sim \frac{1}{N} \sum_{l=1}^{N} E[e^{iuX_t}](\omega_l) \quad (16)$$
The Pricing Parameters

Table: Adopted from Elliott et al. [2016]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(0))</td>
<td>100</td>
</tr>
<tr>
<td>(r)</td>
<td>0.05</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.4</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-0.5</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>3</td>
</tr>
<tr>
<td>(\theta_0 = [\theta^1 \ \theta^2])</td>
<td>[0.025 \ 0.075]</td>
</tr>
</tbody>
</table>
| \(Q_E \) | \[
-1 \ 1 \\
0.5 \ -0.5
\] |
| No. of Simulations | 1 000 000 |
| Time Steps | 250 |
1 Introduction
Stochastic Volatility Modeling
Related literature
Methodology

2 Methods
Model Description
Valuation Formulae

3 Results
Model Parameters
Numerical Results

4 Conclusion
Call prices, $v_0 = 0.02 < \theta^1 < \theta^2$, $H = 0.5$

(a) Starting in a low state: $\theta_0 = \theta^1$

<table>
<thead>
<tr>
<th>K/T</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price</td>
<td>std Error</td>
<td>Price</td>
<td>std Error</td>
<td>Price</td>
<td>std Error</td>
</tr>
<tr>
<td>90</td>
<td>11.57148</td>
<td>0.00745</td>
<td>11.48849</td>
<td>0.00106</td>
<td>13.27125</td>
<td>0.01006</td>
</tr>
<tr>
<td>95</td>
<td>7.38753</td>
<td>0.00648</td>
<td>7.17254</td>
<td>0.00929</td>
<td>9.59107</td>
<td>0.00842</td>
</tr>
<tr>
<td>100</td>
<td>3.97505</td>
<td>0.00504</td>
<td>3.62547</td>
<td>0.00604</td>
<td>6.68191</td>
<td>0.00824</td>
</tr>
<tr>
<td>105</td>
<td>1.69219</td>
<td>0.00338</td>
<td>1.33534</td>
<td>0.00604</td>
<td>3.66323</td>
<td>0.00721</td>
</tr>
<tr>
<td>110</td>
<td>0.55198</td>
<td>0.00192</td>
<td>0.35727</td>
<td>0.00427</td>
<td>1.83362</td>
<td>0.00558</td>
</tr>
<tr>
<td>115</td>
<td>0.14608</td>
<td>0.00098</td>
<td>0.08044</td>
<td>0.00244</td>
<td>0.63928</td>
<td>0.00582</td>
</tr>
<tr>
<td>120</td>
<td>0.03219</td>
<td>0.00045</td>
<td>0.01697</td>
<td>0.00187</td>
<td>0.35077</td>
<td>0.00526</td>
</tr>
</tbody>
</table>

(b) Starting in a high state: $\theta_0 = \theta^2$

<table>
<thead>
<tr>
<th>K/T</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price</td>
<td>std Error</td>
<td>Price</td>
<td>std Error</td>
<td>Price</td>
<td>std Error</td>
</tr>
<tr>
<td>90</td>
<td>11.57717</td>
<td>0.00729</td>
<td>11.73234</td>
<td>0.01122</td>
<td>13.71997</td>
<td>0.01122</td>
</tr>
<tr>
<td>95</td>
<td>7.36691</td>
<td>0.00633</td>
<td>7.63948</td>
<td>0.00999</td>
<td>9.94275</td>
<td>0.00688</td>
</tr>
<tr>
<td>100</td>
<td>3.90727</td>
<td>0.00489</td>
<td>4.31650</td>
<td>0.00851</td>
<td>6.73111</td>
<td>0.00851</td>
</tr>
<tr>
<td>105</td>
<td>1.60708</td>
<td>0.00323</td>
<td>2.02691</td>
<td>0.00688</td>
<td>4.20529</td>
<td>0.00688</td>
</tr>
<tr>
<td>110</td>
<td>0.49681</td>
<td>0.00179</td>
<td>0.77241</td>
<td>0.00587</td>
<td>2.74969</td>
<td>0.00587</td>
</tr>
<tr>
<td>115</td>
<td>0.12359</td>
<td>0.00089</td>
<td>0.24323</td>
<td>0.00340</td>
<td>1.06738</td>
<td>0.00340</td>
</tr>
<tr>
<td>120</td>
<td>0.02729</td>
<td>0.00041</td>
<td>0.06548</td>
<td>0.00264</td>
<td>0.60658</td>
<td>0.00264</td>
</tr>
</tbody>
</table>
Call prices, $v_0 = 0.02 < \theta^1 < \theta^2$, $H = 0.1$

(a) Starting in a low state: $\theta_0 = \theta^1$

<table>
<thead>
<tr>
<th>K/T</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full std Error Partial</td>
<td>Fourier</td>
</tr>
<tr>
<td>80</td>
<td>21.21834 0.08142 21.04928 0.209613</td>
<td>22.70236 0.10162 22.39585 0.212995</td>
<td>24.95195 0.14809 24.43662 0.245435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>16.53185 0.07505 16.79874 0.189825</td>
<td>18.25055 0.10175 18.15340 0.177134</td>
<td>20.83758 0.14293 20.32986 0.202875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>11.98653 0.06997 12.31647 0.119876</td>
<td>13.60705 0.09478 13.86663 0.133714</td>
<td>16.74382 0.13051 16.48881 0.163260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>7.73380 0.06096 7.62077 0.067428</td>
<td>9.73972 0.08340 9.91929 0.089896</td>
<td>12.74631 0.11097 12.76987 0.126413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3.81818 0.04910 3.78302 0.045194</td>
<td>6.02765 0.07292 6.42048 0.083519</td>
<td>9.40261 0.11208 9.42964 0.126413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>1.44438 0.03752 1.51491 0.024732</td>
<td>2.96650 0.05546 3.80160 0.07292</td>
<td>6.43873 0.09919 6.60637 0.104612</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0.42772 0.02180 0.39556 0.12512</td>
<td>1.40261 0.04262 2.06220 0.75938</td>
<td>3.86032 0.08174 4.35670 4.24546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Starting in a high state: $\theta_0 = \theta^2$

<table>
<thead>
<tr>
<th>K/T</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full std Error Partial</td>
<td>Fourier</td>
</tr>
<tr>
<td>80</td>
<td>21.22925 0.07501 20.98623 0.209613</td>
<td>22.79630 0.11497 22.15238 0.2214655</td>
<td>25.74824 0.05678 25.50586 0.2497705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>16.52081 0.07119 16.69764 0.181483</td>
<td>18.18483 0.10556 17.86022 0.1780336</td>
<td>21.70714 0.05376 21.55210 0.2086047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>11.96638 0.06593 12.11152 0.123428</td>
<td>13.99007 0.08802 13.98320 0.1362524</td>
<td>17.95001 0.07006 17.84902 0.2078392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>7.05952 0.05791 7.50617 0.089458</td>
<td>9.84568 0.08937 10.07705 0.0913300</td>
<td>14.15027 0.04681 14.58459 0.1354532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3.63218 0.04688 3.79966 0.176474</td>
<td>6.30056 0.07969 6.45685 0.06377</td>
<td>11.02607 0.04296 11.63212 0.1045152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>1.19131 0.03641 1.33402 0.086007</td>
<td>3.44352 0.06389 3.79153 0.335864</td>
<td>8.10423 0.03822 9.08070 7.79629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0.38912 0.02242 0.51241 0.12238</td>
<td>1.70127 0.05041 2.05766 1.65555</td>
<td>5.76181 0.03393 6.93307 5.61828</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Call prices, $v_0 = 0.02 < \theta^1 < \theta^2$, $H = 0.1, Q > Q_E$

(a) Starting in a low state: $\theta_0 = \theta^1$

<table>
<thead>
<tr>
<th>K/T</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monte Carlo</td>
<td>Semi-Analytic</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td></td>
<td>Full std Error Partial Fourier</td>
<td>Full std Error Partial Fourier</td>
<td>Full std Error Partial Fourier</td>
</tr>
<tr>
<td>80</td>
<td>21.47068 0.09708 21.00175</td>
<td>22.63093 0.10888 22.28225</td>
<td>22.01076 25.42472 0.15965 25.79463</td>
</tr>
<tr>
<td>85</td>
<td>16.66761 0.07313 16.70332</td>
<td>17.97404 0.10169 18.06484</td>
<td>17.72671 21.12468 0.14998 20.03459</td>
</tr>
<tr>
<td>90</td>
<td>11.80479 0.06609 12.27504</td>
<td>13.90196 0.09522 13.89394</td>
<td>13.45825 17.08855 0.14001 16.49172</td>
</tr>
<tr>
<td>95</td>
<td>7.59101 0.05911 7.61382</td>
<td>9.68327 0.08705 9.99224</td>
<td>9.19971 13.44172 0.13147 13.35790</td>
</tr>
<tr>
<td>100</td>
<td>3.77509 0.04935 3.78298</td>
<td>6.05559 0.07620 6.41210</td>
<td>5.42301 10.14287 0.12180 10.23271</td>
</tr>
<tr>
<td>105</td>
<td>1.24446 0.03634 1.39731</td>
<td>3.19847 0.06080 3.79761</td>
<td>2.66488 6.97217 0.10751 7.34930</td>
</tr>
<tr>
<td>110</td>
<td>0.46183 0.02466 0.50095</td>
<td>1.50331 0.04772 2.08867</td>
<td>1.11439 4.69907 0.08864 5.18584</td>
</tr>
</tbody>
</table>

(b) Starting in a high state: $\theta_0 = \theta^2$

<table>
<thead>
<tr>
<th>K/T</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monte Carlo</td>
<td>Semi-Analytic</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td></td>
<td>Full std Error Partial Fourier</td>
<td>Full std Error Partial Fourier</td>
<td>Full std Error Partial Fourier</td>
</tr>
<tr>
<td>80</td>
<td>21.27567 0.07903 21.07213</td>
<td>22.70422 0.11488 22.25050</td>
<td>22.04900 25.71770 0.16603 24.45007</td>
</tr>
<tr>
<td>85</td>
<td>16.51986 0.07355 16.78900</td>
<td>18.38982 0.10809 17.98040</td>
<td>17.73785 21.25906 0.15787 21.93313</td>
</tr>
<tr>
<td>90</td>
<td>12.02166 0.06611 12.01867</td>
<td>13.84454 0.09795 13.64289</td>
<td>13.49585 17.24327 0.14703 17.88039</td>
</tr>
<tr>
<td>95</td>
<td>7.57394 0.05978 7.72731</td>
<td>9.88294 0.08755 9.66080</td>
<td>9.31996 13.34188 0.13406 13.78744</td>
</tr>
<tr>
<td>100</td>
<td>3.69629 0.04933 3.79203</td>
<td>6.05455 0.07464 6.43077</td>
<td>5.62394 10.13329 0.12298 10.44554</td>
</tr>
<tr>
<td>105</td>
<td>1.31239 0.03849 1.47665</td>
<td>3.50841 0.06450 3.87000</td>
<td>2.88394 7.42620 0.10936 7.83990</td>
</tr>
<tr>
<td>110</td>
<td>0.53143 0.02878 0.42124</td>
<td>1.72727 0.04967 2.07582</td>
<td>1.28172 5.01555 0.09459 5.83673</td>
</tr>
</tbody>
</table>
Call prices - Heston model modifications, $T = 1$

(a) Starting in a low state: $\theta_0 = \theta^1$

<table>
<thead>
<tr>
<th></th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Price std Error</th>
<th>Fourier</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Price std Error</th>
<th>Fourier</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Price std Error</th>
<th>Fourier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Heston</td>
<td></td>
<td>Rough Heston</td>
<td>Regime Switching Rough Heston</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td></td>
<td></td>
<td>Price std Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.18566</td>
<td>0.00023</td>
<td>24.40145</td>
<td>24.87668</td>
<td>0.12432</td>
<td>24.4194</td>
<td>24.95195</td>
<td>0.14809</td>
<td>24.54135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.73528</td>
<td>0.00033</td>
<td>20.01877</td>
<td>20.64464</td>
<td>0.11906</td>
<td>20.03026</td>
<td>20.87358</td>
<td>0.14293</td>
<td>20.28785</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.54209</td>
<td>0.00042</td>
<td>15.860625</td>
<td>15.91075</td>
<td>0.10802</td>
<td>15.87262</td>
<td>16.74382</td>
<td>0.13051</td>
<td>16.32680</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.74930</td>
<td>0.00050</td>
<td>12.02694</td>
<td>12.01290</td>
<td>0.10022</td>
<td>12.03685</td>
<td>12.74631</td>
<td>0.11821</td>
<td>12.64163</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.50614</td>
<td>0.00055</td>
<td>8.63622</td>
<td>8.28652</td>
<td>0.08782</td>
<td>8.46671</td>
<td>9.40263</td>
<td>0.11208</td>
<td>9.30234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.91152</td>
<td>0.00058</td>
<td>5.80791</td>
<td>5.03983</td>
<td>0.07613</td>
<td>5.81549</td>
<td>6.43873</td>
<td>0.09919</td>
<td>6.46152</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.97837</td>
<td>0.00058</td>
<td>3.62625</td>
<td>2.88119</td>
<td>0.06492</td>
<td>3.62874</td>
<td>3.86032</td>
<td>0.08174</td>
<td>4.24546</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Starting in a high state: $\theta_0 = \theta^2$

<table>
<thead>
<tr>
<th></th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Price std Error</th>
<th>Fourier</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Price std Error</th>
<th>Fourier</th>
<th>Monte Carlo</th>
<th>Semi-Analytic</th>
<th>Price std Error</th>
<th>Fourier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Heston</td>
<td></td>
<td>Rough Heston</td>
<td>Regime Switching Rough Heston</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td></td>
<td></td>
<td>Price std Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.24961</td>
<td>0.00025</td>
<td>25.56759</td>
<td>26.12745</td>
<td>0.18946</td>
<td>25.64066</td>
<td>25.74824</td>
<td>0.05678</td>
<td>24.97705</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.34310</td>
<td>0.00028</td>
<td>21.66156</td>
<td>22.12496</td>
<td>0.18115</td>
<td>21.74460</td>
<td>21.70714</td>
<td>0.05376</td>
<td>20.86047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.77426</td>
<td>0.00030</td>
<td>18.04638</td>
<td>17.86913</td>
<td>0.16392</td>
<td>18.13614</td>
<td>17.96501</td>
<td>0.05086</td>
<td>17.03892</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.58986</td>
<td>0.00032</td>
<td>14.76582</td>
<td>14.37190</td>
<td>0.15299</td>
<td>14.85821</td>
<td>14.15027</td>
<td>0.04681</td>
<td>13.55432</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.81316</td>
<td>0.00034</td>
<td>11.85344</td>
<td>11.37817</td>
<td>0.13983</td>
<td>11.94405</td>
<td>11.00267</td>
<td>0.04286</td>
<td>10.45512</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.44701</td>
<td>0.00035</td>
<td>9.32861</td>
<td>8.53524</td>
<td>0.12659</td>
<td>9.41330</td>
<td>8.10423</td>
<td>0.03822</td>
<td>7.79629</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.47475</td>
<td>0.00035</td>
<td>7.19422</td>
<td>6.24291</td>
<td>0.11296</td>
<td>7.26965</td>
<td>5.76181</td>
<td>0.03393</td>
<td>5.61828</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hurst Parameter Price Impact

(a) 6 months maturity

(b) 1 year maturity

(c) 1.85 years maturity

(d) 2.5 years maturity
Implied Volatility Surface

Implied Volatility - Regime Switching Rough Heston Model

- $H=0.1$, low regime
- $H=0.3$, high regime
- $H=0.5$, high regime

Ludger Overbeck, University of Giessen, Germany
2019 Workshop on Insurance and Financial Mathematics, Talanx, Hannover
Computational Speed

<table>
<thead>
<tr>
<th>Model</th>
<th>Pricing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Heston</td>
<td>Semi-Analytic 0.534319</td>
</tr>
<tr>
<td>Regime Switching Heston</td>
<td>5.065121</td>
</tr>
<tr>
<td>Rough Heston</td>
<td>4.041738</td>
</tr>
<tr>
<td>Regime Switching Rough Heston</td>
<td>19.56441</td>
</tr>
</tbody>
</table>

Time measured in seconds.
Concluding Remarks

• We studied the regime switching rough Heston models.
• The main goal is to construct a unified framework that captures the stylized facts of volatility.
• We developed a pricing engine and fully implemented this analytic approach.
• We benchmark these semi-analytic prices against two types of Monte-Carlo-simulations.
• Talk is based on the paper with Mesias Alfeus and Erik Schloegl: ”Regime switching rough Heston model” in Journal of Futures Markets Volume 39, Issue 5. 2019
Thank you!
References

