Some Insurance Valuation and Design Problems with Aggregate Risk

Enrico Biffis
J. Mack Robinson College of Business
Georgia State University
&
Imperial College Business School

Zurich
April 14, 2016
OVERVIEW

Standard insurance valuation/design problems

- Pooling homogeneous, (conditionally) independent risks
- Representative agent/policyholder
- If portfolio is large, only aggregate risk matters

In practice, however...

- Aggregate risk can arise endogenously (e.g., policyholder behavior)
- Valuation and contract design should internalize aggregate risk

Some interesting problems

- Optionality in long term insurance contracts
 - Ex-ante i.i.d. risks give rise to endogenous aggregate risk
- P&C examples
 - Conditionally i.i.d. risks and coverage for high layers of exposure
 - Multi-year agricultural insurance in supply chain risk management
Overview

Optionality in Life insurance

Testing for Dynamic Adverse Selection

P&C Applications

Conclusion
OPTIONALITY IN LIFE INSURANCE

Long term insurance contracts

- Longevity/mortality risk assessment: is it enough?
- Are financial and demographic risk factors uncorrelated?
- Asset Management Charges (AMCs) vs. level premiums
- Role of contract design and policyholder behavior
- Endogenous dependence and aggregate risk via optionality

Policyholder behavior

- ‘Rational’ exercise of options
- Testing for dynamics adverse selection
- Making sense of actuarial approaches: **pricing basis** & and **lapse/surrender basis**
SETUP

Longevity risk

• Aggregate changes in survival probabilities
• Both aggregate and idiosyncratic risk relevant in the presence of optionality

Reference setup: conditionally Poisson / Cox setting (more generally, see Tappe and Weber, 2014)

• At contract inception (time 0), portfolio of insureds with death times τ^1, \ldots, τ^n
• Each τ^i has force of mortality $\mu^i(t)$
• Possible representations: $\mu^i(t) = X(t) + Y^i(t)$ or $\mu^i(t) = X(t) Y^i(t)$

Portfolio vs. population

• Surrender/lapse time θ^i
• Exit from the portfolio at stopping time $\sigma^i := \tau^i \land \theta^i$
POLICYHOLDER BEHAVIOR

Value of the contract to insured i is

$$v^i(t; \sigma^i, c) = 1_{\sigma^i > t} \mathbb{E}_Q^i \left[\int_t^{\theta^i \wedge T} e^{-\int_t^s (r(u) + \mu^i(u)) du} dG^i(s; c) \left| \mathcal{F}_t \right. \right].$$

- $G^i(t; c)$: cumulative gains to the insured from holding the insurance contract, with $c \in C$ contract configuration (including guarantees)
Value of the contract to insured i is

$$v^i(t; \sigma^i, c) = 1_{\sigma^i > t} \mathbb{E}^{Q^i} \left[\int_t^{\theta^i \wedge T} e^{- \int_t^s (r(u) + \mu^i(u)) \, du} dG^i(s; c) \bigg| \mathcal{F}^i_t \right].$$

- $G^i(t; c)$: cumulative gains to the insured from holding the insurance contract, with $c \in C$ contract configuration (including guarantees)

Some issues...

- Q^i private valuation of insured i
- $\mathbb{F}^i := (\mathcal{F}^i_t)_{t \geq 0}$ (private) information available to insured i
- Endogenous σ^i (optimal stopping problem θ^i)
 - More generally, one should also allow for other dimensions of optionality (fund switches, partial withdrawals, etc.)

Question: how to proxy for v^i across p/h’s?
DYNAMIC ADVERSE SELECTION

Individuals **ex-ante** identical

- **At contract inception (time 0)** policyholders' death times τ_1, \ldots, τ^n have (say) independent intensities μ^i_1, \ldots, μ^n_i with the **same law as process μ**
- $(F(t))_{t \geq 0}$ vector of financial risk factors (say) independent of mortality
DYNAMIC ADVERSE SELECTION

Individuals \textbf{ex-ante} identical

- At contract inception (time 0) policyholders' death times τ^1, \ldots, τ^n have (say) independent intensities μ^1, \ldots, μ^n with the \textit{same law} as process μ
- $(F(t))_{t \geq 0}$ vector of financial risk factors (say) independent of mortality

\textbf{Ex-post} mortality profile of the portfolio

- Different trajectories $(\mu^i(t, \omega_1), F(t, \omega_1))_{t \geq 0}, \ldots, (\mu^i(t, \omega_k), F(t, \omega_k))_{t \geq 0}$ make staying in the contract more or less valuable for p/h i
- The moneyness of any guarantee/option is at shaped at least by μ^i and $c \in C$ (contract design channel)
- \textbf{Portfolio mortality} (average intensity)

$$\bar{\mu}_p(t) := \frac{\sum_{i=1}^{n} \mu^i(t) 1_{\sigma^i > t}}{\sum_{i=1}^{n} 1_{\sigma^i > t}}.$$

- The insurer cannot observe μ^i, but can try to recover the \textit{law} of $\bar{\mu}_p$ based on $c \in C$ and relevant (observable) state variables
FRAILTY REPRESENTATION

Change in intensity process

- Think of death times τ (representative member of the population) and $\bar{\tau}_p$ (average portfolio member)

- Dynamic frailty representation: individual (on $\{\sigma^i > t\}$) or average/representative portfolio member (on $\{\sigma^{(n)} > t\}$)

$$
\mu^i(t) = \mu(t)\eta^i(t; c) \quad \bar{\mu}_p(t) = \mu(t)\bar{\eta}(t; c)
$$

with $(\eta^i(t, c))_{t \geq 0} > 0$ and $(\bar{\eta}(t; c))_{t \geq 0} > 0$ dynamic frailty processes; under suitable assumptions, the Cox setting is preserved (e.g., Biffis, Denuit, Devolder, 2010)

- Think of change in intensity as captured by a suitable change of probability measure: likelihood ratio driven by dynamic frailty process
Pricing

Insurer’s view

- Baseline reference probability measures Q_F (financial factors) and P_M (population mortality)
- Pricing with $Q := Q_F \otimes P_M$ (wrong!)

$$V^i(0; \theta^i, c) = V(0; \theta, c) = \mathbb{E}^Q \left[\int_0^{\theta \wedge T} e^{-\int_0^s (r(u) + \mu(u))\,du} \, dG(s; c) \right].$$
PRICING

Insurer’s view

• Baseline reference probability measures \mathbb{Q}_F (financial factors) and \mathbb{P}_M (population mortality)

• Pricing with \mathbb{Q}_F (reflects portfolio mortality)

$$V_p^i(0; \theta^i, c) = V_p(0; \theta, c) = \mathbb{E}^{\mathbb{Q}_F} \left[\int_{0}^{\theta \wedge T} e^{-\int_{0}^{s} (r(u) + \mu_p(u))du} dG(s; c) \right].$$

• The representative policyholder’s death time is τ_p and not τ...

Pricing

Insurer’s view

- Baseline reference probability measures \mathbb{Q}_F (financial factors) and \mathbb{P}_M (population mortality)
- Pricing with \mathbb{Q}_p (reflects portfolio mortality)

\[
V_p^i(0; \theta^i, c) = V_p(0; \theta, c) = \mathbb{E}^{\mathbb{Q}_p} \left[\int_0^{T_{\theta}} e^{-\int_0^s (r(u) + \mu_p(u)) du} dG(s; c) \right].
\]

- The representative policyholder’s death time is τ_p and not τ...

Implications

- Change in intensity and no factorization in general even if mortality and financial risk factors uncorrelated
- Surrender/lapse basis jointly determined with mortality basis
- Useful framework for contract design: optimize with respect to $c \in C$
 - Determine fair AMCs
 - Steer the portfolio toward a target mortality risk profile
EXAMPLES

Baseline example

- 20-year VA contract
- 45 male, non smoker
- GMAB (accumulation): 2.5% p.a.
- GMSB (survival): premiums paid with 0% or 2.5% p.a. guarantee; but surrender penalties in the first 5 years of contract
- GMDB (death): varying from zero to $2 \times \text{GMAB guaranteed rate}$
- Reference fund: Geometric Brownian Motion, 15% volatility

GMWB (withdrawal) and GMLB (lifetime) also interesting...

- Wedge between systematic and idiosyncratic risk more important
AVERAGE FRAILTY (GMSB: premium paid)

Source: Benedetti and Biffis (2016).
AVERAGE FRAILTY (GMSB: premium paid rolled over at 2.5% p.a.)

Source: Benedetti and Biffis (2016).
FAIR AMCs (GMSB: initial amount paid into the policy)

Source: Benedetti and Biffis (2016).
FAIR AMCs (GMSB: initial amount rolled over at 2.5% p.a.)

Source: Benedetti and Biffis (2016).
<table>
<thead>
<tr>
<th></th>
<th>Overview</th>
<th>Optionality in Life insurance</th>
<th>Testing for Dynamic Adverse Selection</th>
<th>P&C Applications</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Optionality in Life insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Testing for Dynamic Adverse Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P&C Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible approaches suggested by our framework

- Use frailty process \((\eta(t; c))_{t \geq 0}\)
- Use ‘distance’ between \(\mu(t)\) and \(\bar{\mu}_p(t)\)
- Use ‘distance’ between (conditional) law of \(\tau\) and \(\bar{\tau}_p\)
TESTING FOR DYNAMIC ADVERSE SELECTION

Possible approaches suggested by our framework

- Use frailty process \((\eta(t; c))_{t \geq 0}\)
- Use ‘distance’ between \(\mu(t)\) and \(\mu_p(t)\)
- Use ‘distance’ between (conditional) law of \(\tau\) and \(\tau_p\)

A class of divergences (e.g., Vonta-Karagrigoriou, 2010)

\[
D_{\tau, \tau_p}^\psi(t) = \int_t^T \psi \left(\frac{dP(t < \tau_p \leq s | F_t)}{dP(t < \tau \leq s | F_t)} \right) dP(t < \tau \leq s | F_t),
\]

with \(\psi \in C^2(\mathbb{R}_+; \mathbb{R}), \psi(1) = 0\)

- Examples: \(\alpha\)-divergences (Csiszár’s family), Kullback-Leibler, Hellinger, etc.
- Different from standard approaches (e.g, Albert et al., 1999; He, 2011)

\[
\text{Actual_deaths}_t / \text{Expected_deaths}_t = \alpha + \beta \times \text{Lapse}_t + \varepsilon
\]

\[
P(lapse_i = 1) = F(a + b \times \text{health_shock}_i)
\]
SOME RESULTS

\[\beta \text{ estimates for regressions }
\begin{align*}
 y_{t+1} &= \alpha + \beta \times \text{lapse_ratio}_t + \varepsilon_t. \\
 y_{t+1} &= \eta y_{t+1} = KL(\mu, \mu_p)
\end{align*} \]

<table>
<thead>
<tr>
<th>(D/S)</th>
<th>(y_{t+1} = \bar{\eta})</th>
<th>(y_{t+1} = KL(\mu, \mu_p))</th>
<th>(\beta)</th>
<th>(p\text{-value})</th>
<th>(\beta)</th>
<th>(p\text{-value})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.62*</td>
<td>0.032</td>
<td>0.10*</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>-1.94*</td>
<td>0.008</td>
<td>0.11*</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>-2.17*</td>
<td>0.009</td>
<td>0.08</td>
<td>0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>-24.02</td>
<td>0.005</td>
<td>1.45*</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>-2.52*</td>
<td>0.020</td>
<td>0.21*</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>-0.71</td>
<td>0.146</td>
<td>0.14*</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>-0.43</td>
<td>0.246</td>
<td>0.12*</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>-0.26</td>
<td>0.355</td>
<td>0.12*</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>-0.13</td>
<td>0.434</td>
<td>0.13*</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>-0.13</td>
<td>0.442</td>
<td>0.12*</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>-0.28</td>
<td>0.380</td>
<td>0.13*</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Benedetti and Biffis (2016).

\[\beta \text{ estimates for regressions }
\begin{align*}
 y_{t+1} &= \alpha + \beta \times \text{lapse_ratio}_t + \gamma \times t + \varepsilon_t. \\
 y_{t+1} &= \eta y_{t+1} = KL(\mu, \mu_p)
\end{align*} \]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(p\text{-value})</th>
<th>(\beta)</th>
<th>(p\text{-value})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.83*</td>
<td>0.043</td>
<td>0.11*</td>
<td>0.029</td>
</tr>
<tr>
<td>-2.28*</td>
<td>0.010</td>
<td>0.14*</td>
<td>0.004</td>
</tr>
<tr>
<td>-2.18*</td>
<td>0.022</td>
<td>0.11*</td>
<td>0.039</td>
</tr>
<tr>
<td>-27.75*</td>
<td>0.006</td>
<td>1.58*</td>
<td>0.009</td>
</tr>
<tr>
<td>-2.95*</td>
<td>0.018</td>
<td>0.21*</td>
<td>0.010</td>
</tr>
<tr>
<td>-1.04</td>
<td>0.114</td>
<td>0.13*</td>
<td>0.004</td>
</tr>
<tr>
<td>-0.82</td>
<td>0.167</td>
<td>0.12*</td>
<td>0.011</td>
</tr>
<tr>
<td>-0.70</td>
<td>0.241</td>
<td>0.10*</td>
<td>0.038</td>
</tr>
<tr>
<td>-0.54</td>
<td>0.324</td>
<td>0.13*</td>
<td>0.022</td>
</tr>
<tr>
<td>-0.62</td>
<td>0.326</td>
<td>0.15*</td>
<td>0.011</td>
</tr>
<tr>
<td>-0.68</td>
<td>0.335</td>
<td>0.14*</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Source: Benedetti and Biffis (2016).

- Simulated environment for 2500 traditional contracts issued to male non-smokers aged 50.
- Maturity \(T = 20\) years, decreasing surrender penalties during the first 3 years of contract. Death (\(D\)) and survival (\(S\)) benefits.
- Use average frailty \(\bar{\eta} = \mu_p/\mu\) as proxy for actual/expected deaths.
RISK SHARING AND LIMITED LIABILITY

A risk sharing problem (Arrow/Raviv) with limited liability

- One-period model with a continuum of insurees modeled as the measure space (M, M, μ) of the unit interval $M = [0, 1]$, with $\mu(M) = 1$.
- Insurer maximizes function V over indemnities (I_i), and risky asset allocation (α)

$$V(\alpha, (I_i)) = \max \left\{ \left(A + \int_0^1 \pi_i \mu(di) \right) (1 + \alpha R) - \int_0^1 I_i(X_i) \mu(di), 0 \right\}$$

where $I_i(X_i)$ is indemnity for p/h i’s loss X_i financed by insurance premium $\pi_i \geq 0$

- Can optimize relative to initial capital A
- Can add regulatory constraints

- Each insuree satisfies the participation constraint

$$E \left[u_i(w_i - \pi_i - X_i + I_i(X_i)1_{D=0} + \gamma I_i(X_i)1_{D=1}) \right] \geq u_i,$$

with $\{D = 1\}$ default event, $\gamma \in [0, 1]$ recovery rate
AGGREGATION

Assume $X_i = Y_i + Z$ for all $i \in [0, 1]$

- (Y_i) essentially uncorrelated (and i.d. for simplicity here), $(Y_i), Z \in L^2$
- Use Sun (2006)’s Exact Law of Large Numbers.

Some special cases

- Idiosyncratic risk only ($Z = 0$)
 $$\int_0^1 I(X_i) \mu(d\xi) = \int_0^1 E[I(X_i)] \mu(d\xi) = E[I(X_i)] = E[I(X)] \text{ a.s.}$$

- Systematic risk only ($Y_i = 0$): some examples to follow
 $$\int_0^1 I(X_i) \mu(d\xi) = \int_0^1 E[I(X_i)|Z] \mu(d\xi) = E[I(X_i)|Z] \ldots$$

- Good model lies somewhere in the middle
OPTIMAL INDEMNITY SCHEDULE

Source: Biffis and Millossovich (2013).
OPTIMAL RETENTION LEVELS

Source: Biffis and Millossovitch (2013).
Average retention levels in US P&C, evidence from reinsurance purchases. Source: Guy Carpenter (e.g., Froot 1997, 2001).
Source: Biffis and Millossovich (2013).
SUPPLY CHAIN RISK MANAGEMENT

General questions

- How to unlock value in supply chains via risk sharing arrangements?
- How to build inclusive and resilient local-to-global supply chains?

Agricultural insurance example (World Food Program)

- Farmers organizations as aggregators of small farmholders
- Banks as providers of credit (better inputs and technology)
- Agro-dealers as off-takers
- (Re)insurers cover extreme crop yield losses

Challenges (World Food Program)

- How to incentivize farmers to switch to more resilient production technologies?
- Technology takes time to demonstrate its value (several harvesting seasons)
- At odds with short term contracts offered by (re)insurers
Effect of Return Period on Production Loss

- Rainfed maize
- Short cycle maize
- Irrigated maize

Source: Biffis and Chavez (2016).
MULTI-YEAR PROGRAMS

Insurance contract: **structure and payouts**

- **Payout**
 - Volume of deficit production at average production at \(p^* \) price

- **Regional weather index**
 - Increasing severity and loss, decreasing probability

- **Average/normal prices**

- **Loan defaults**
- **Weather driven production losses**
- **Upward price pressure**

Source: WINnERS project, Biffis and Chavez (2016).

- Uncertainty in medium-to-long-term climate projections is source of aggregate risk
- Explicitly allow for random fraction (\(Q \)) of farmholders affected by crop yield losses
- Optimal contract \(I^*(X, Q) \) entails contingent attachment/detachment points (Biffis and Louaas, 2016)
MULTI-YEAR PROGRAMS

Insurance contract: indirect insurance for farmer

- Uncertainty in medium-to-long-term climate projections is source of aggregate risk
- Explicitly allow for random fraction \((Q)\) of farmholders affected by crop yield losses
- Optimal contract \(I^*(X, Q)\) entails contingent attachment/detachment points (Biffis and Louaas, 2016)

Source: WINnERS project, Biffis and Chavez (2016).
CONCLUSION

Standard valuation/risk sharing models useful
- Risk pooling (predictability, vanishing cost of capital)
- Representative policyholder approach

Allowing explicitly for aggregate risk can be more useful
- From idiosyncratic risk to systematic risk via optionality
- Systematic risk, aggregate risk, and counterparty risk
- New avenues for risk sharing via complete contracts

Technical caveats
- Some interesting challenges: incomplete market valuation methods and feedback effects, existence and uniqueness of solutions in risk sharing problems, etc.
THANK YOU