Stochastic mortality under measure changes

Enrico Biffis
Imperial College London

Talk based on joint work with David Blake (Cass), Lorenzo Pitotti (Imperial/Algorithmics), Ariel Sun (Imperial/RMS), Michel Denuit (UC Louvain), Pierre Devolder (UC Louvain)

Talanx, Hanover
April 20, 2012
AGENDA

1. Motivation
2. Cox setting
3. Measure changes
4. Examples
5. Case study: Longevity swaps
6. Conclusion
MOTIVATION

Stochastic mortality models

- doubly stochastic/Cox setting ubiquitous
- pricing/valuation approaches vs. realistic risk analysis
- computational tractability vs. empirical evidence/performance
MOTIVATION

Stochastic mortality models
- doubly stochastic/Cox setting ubiquitous
- pricing/valuation approaches vs. realistic risk analysis
- computational tractability vs. empirical evidence/performance

Same model for different purposes: is it asking too much?
- real world and risk-neutral world
- comparability: capital modelling and market-consistent valuation
- Cox setting has drawbacks, but can survive changes of measures
MOTIVATION

Stochastic mortality models

- doubly stochastic/Cox setting ubiquitous
- pricing/valuation approaches vs. realistic risk analysis
- computational tractability vs. empirical evidence/performance

Same model for different purposes: is it asking too much?

- real world and risk-neutral world
- comparability: capital modelling and market-consistent valuation
- Cox setting has drawbacks, but can survive changes of measures

Mortality risk premia

- structure of risk premia often restrictive: broader structure valuable, often needed by setting
- reduced-form vs. structural/equilibrium approaches
 - bottom-up approaches to mortality risk premia
 - examples: asymmetric information, funding costs
COX SETTING

m individuals aged x_1, \ldots, x_m at time 0

- τ^i individual i’s random time of death
- $N_t = (N_t^1, \ldots, N_t^m)$, $N_t^i = 1_{\tau^i \leq t}$
COX SETTING

m individuals aged x_1, \ldots, x_m at time 0
- τ^i individual i’s random time of death
- $N_t = (N^1_t, \ldots, N^m_t)$, $N^i_t = 1_{\tau^i \leq t}$

Information structure $F = G \lor H$
- $G = (G_t)_{t \geq 0}$ carries information about relevant risk factors (health status, reference populations, interest rates, etc.)
- $H = (H_t)_{t \geq 0} = \lor_{i=1}^{m} H^i_t$ carries information about death occurrences
 - each $H^i_t = (H^i_t)_{t \geq 0}$ augmented filtration generated by N^i_t
COX SETTING

m individuals aged x_1, \ldots, x_m at time 0
- τ^i individual i's random time of death
- $N_t = (N_t^1, \ldots, N_t^m), \ N_t^i = 1_{\tau^i \leq t}$

Information structure $F = G \lor H$
- $G = (G_t)_{t \geq 0}$ carries information about relevant risk factors (health status, reference populations, interest rates, etc.)
- $H = (H_t)_{t \geq 0} = \lor_{i=1}^m H^i$ carries information about death occurrences
 - each $H^i = (H^i_t)_{t \geq 0}$ augmented filtration generated by N_t^i

Cox / doubly stochastic / conditionally Poisson assumption
- Conditional on G_∞, each N^i coincides with first jump of conditionally Poisson process with G-predictable intensity $(\mu^i_t)_{t \geq 0}$
- Conditional survival probabilities

\[\mathbb{P}(\tau^i > T | F_t) = 1_{\tau^i > t} E \left[e^{-\int_t^T \mu^i_s \, ds} \bigg| G_t \right] \]
Motivation Cox setting Measure changes Examples Case study: Longevity swaps Conclusion

PRO’S

- (Semi)explicitly survival probabilities in some settings (e.g., affine)

\[
E \left[e^{- \int_0^T \mu_t^i \, dt} \right] = e^{A(0;T) + B(0;T) \cdot X_0}, \quad \mu_t^i = g^i(t, X_t)
\]

- Spread-based approach to market-consistent pricing and reserving

\[
E^\tilde{\mathbb{P}} \left[\int_0^T e^{- \int_0^t r_s \, ds} D_t \, dN_t^i + e^{- \int_0^T r_s \, ds} S_T \, 1_{\tau^i > T} \right]
\]

\[
= E^\tilde{\mathbb{P}} \left[\int_0^T e^{- \int_0^t (r_s + \mu_s^i) \, ds} D_t \mu_t^i \, dt + e^{- \int_0^T (r_t + \mu_t) \, dt} S_T \right]
\]

- Can easily simulate random death times

\[
\tau^i = \inf \left\{ t > 0 : \int_0^t \mu_s^i > \Theta \right\}, \quad \Theta \sim \text{Exp}(1)
\]
CON’S

Information and death/survival probabilities

- Cannot update conditional survival probability based on death occurrences

\[
P(\tau^i > T | G_t \lor H^1_t \lor \ldots \lor H^n_t) = P(\tau^i > T | G_t \lor H^i_t)
\]

- Example: Learning about the underlying force of mortality

Inconsistency across settings

- Cox may hold under \(\mathbb{P} \) but not under \(\tilde{\mathbb{P}} \sim \mathbb{P} \)
- Think of real-world/risk-neutral ESGs
- Example: risk-neutral Lee-Carter family

Inconsistency with approximate hedging methods

- natural incomplete market approaches inconsistent with Cox under \(\tilde{\mathbb{P}} \sim \mathbb{P} \)
- Example: Mean-Variance hedging with bespoke longevity swap
AGENDA

1. Motivation
2. Cox setting
3. Measure changes
4. Examples
5. Case study: Longevity swaps
6. Conclusion
EQUIVALENT MARTINGALE MEASURES

Girsanov-Meyer theorem

\[
\frac{d\tilde{P}}{dP} = \exp \left(- \int_0^T \frac{1}{2} \|\eta_s\|^2 ds - \int_0^T \eta_s \cdot dW_s \right) \prod_{i=1}^m \left(1 + \phi^{i}_{\tau^i} 1_{\tau^i \leq T} \right) \exp \left(\int_{0}^{\min(\tau^i, T)} \phi^{i}_{\tau^i} \mu^{i}_{\tau^i} ds \right)
\]

- \(\tilde{W}_t = W_t + \int_0^t \eta_s ds \) B.m. under \(\tilde{P} \)
- each \(\tau^i \) has intensity \(1_{\tau^i > t}(1 + \phi^{i}_t)\mu^{i}_t \) under \(\tilde{P} \)

Cox setting survives when switching to \(\tilde{P} \sim P \) if \((\eta, \phi^1, \ldots, \phi^m) \) \(\mathbb{G} \)-predictable
MORTALITY RISK PREMIA

Systematic mortality risk
- affects the conditional death probability of each individual in the portfolio
- channelled by $(\eta_t)_{t \geq 0}$

Unsystematic mortality risk
- depends on portfolio size, $m - \sum_{i=1}^{m} N_t^i$
- jointly captured by $\phi_t^1(1 - N_t^1), \ldots, \phi_t^m(1 - N_t^m)$

Individual death timing risk
- captured by each $\phi_t^i(1 - N_t^i)$
- relevant whenever insurance demand (e.g., pricing) or policyholders’ preferences (American-type guarantees, dynamic adverse selection) matter

The last two involve a change in intensity process, $\mu_t^i \sim \mu_t^i(1 + \phi_t^i)$, the first one does not.
AGENDA

1. Motivation
2. Cox setting
3. Measure changes
4. Examples
5. Case study: Longevity swaps
6. Conclusion
EXAMPLE: LEARNING

Death times τ^1, \ldots, τ^m have common intensity μ

- assume that $Y := \log \mu$ evolves according to

\[
dY_t = (a(t) + b(t)Y_t + c(t)\psi)dt + \sigma(t, Y_t)dW_t
\]

Insurer observes Y

- recovers σ from quadratic variation of Y, and draws inferences about drift in Bayesian fashion, backing out from observations of Y the true value of ψ
- think of insurer endowed with (F^Y, \tilde{P}), with \tilde{P} subjective probability measure reflecting Bayesian updating based on prior beliefs on ψ

\[
\begin{align*}
\eta_t &= \frac{c(t)(\psi - \Psi_t)}{\sigma(t, Y_t)} \in G_t, \\
\phi^i &= 0
\end{align*}
\]
EXAMPLE: LEARNING

Death times τ^1, \ldots, τ^m have common intensity μ
 - assume that $Y := \log \mu$ evolves according to

 $$dY_t = (a(t) + b(t)Y_t + c(t)\psi)dt + \sigma(t, Y_t)dW_t$$

Insurer observes Y
 - recovers σ from quadratic variation of Y, and draws inferences about drift in Bayesian fashion, backing out from observations of Y the true value of ψ
 - think of insurer endowed with $(\mathbb{F}^Y, \tilde{P})$, with \tilde{P} subjective probability measure reflecting Bayesian updating based on prior beliefs on ψ

 $$\eta_t = \frac{c(t)(\psi - \Psi_t)}{\sigma(t, Y_t)} \in \mathcal{G}_t, \quad \phi^i = 0$$

Suppose the insurer uses (Y, N)
 - $\eta, \phi^1, \ldots, \phi^m$ depend on N: the Cox setting does not survive...
EXAMPLE: MEAN-VARIANCE HEDGING

Liability

- portfolio of indexed survival benefits (e.g., $\sum_{i=1}^{m} 1_{\tau^i > T} f(S_T)$)

Tradeables

- index $(S_t)_{t \geq 0}$
- bespoke longevity swap, it spans $(N_t)_{t \geq 0}$

Approximate hedging method

- minimize mean-square error of A/L mismatch at $T > 0$
- \widetilde{P} entails \mathbb{F}-predictable $(\eta, \phi^1, \ldots, \phi^m)$
 - Cox setting does not survive change of measure
- \widetilde{P} entails $\phi^i \neq 0$
 - portfolio size attracts a risk premium
EXAMPLE: ADVERSE SELECTION IN THE BUYOUT MARKET

Source: Biffis/Blake (2011)
EXAMPLE: SECURITIZATION WITH ASYMMETRIC INFORMATION

Source: Biffis/Blake (2010a)
AGENDA

1. Motivation
2. Cox setting
3. Measure changes
4. Examples
5. Case study: Longevity swaps
6. Conclusion
SOME TRANSACTIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Hedger</th>
<th>Size</th>
<th>Term (yrs)</th>
<th>Type</th>
<th>Interm./supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 08</td>
<td>Lucida</td>
<td>Not disclosed</td>
<td>10</td>
<td>indexed</td>
<td>JPM ILS funds</td>
</tr>
<tr>
<td>Jul 2008</td>
<td>Canada Life</td>
<td>GBP 500m</td>
<td>40</td>
<td>indemnity</td>
<td>JPM ILS funds</td>
</tr>
<tr>
<td>Feb 2009</td>
<td>Abbey Life</td>
<td>GBP 1.5bn</td>
<td>run-off</td>
<td>indemnity</td>
<td>DB ILS funds Partner Re</td>
</tr>
<tr>
<td>Mar 2009</td>
<td>Aviva</td>
<td>GBP 475m</td>
<td>10</td>
<td>indemnity</td>
<td>RBS</td>
</tr>
<tr>
<td>Jun 2009</td>
<td>Babcock International</td>
<td>GBP 750m</td>
<td>50</td>
<td>indemnity</td>
<td>Credit Suisse Pacific Life Re</td>
</tr>
<tr>
<td>Jul 2009</td>
<td>RSA</td>
<td>GBP 1.9bn</td>
<td>run-off</td>
<td>indemnity</td>
<td>GS (Rothesay Life)</td>
</tr>
<tr>
<td>Dec 2009</td>
<td>Berkshire Council</td>
<td>GBP 750m</td>
<td>run-off</td>
<td>indemnity</td>
<td>Swiss Re</td>
</tr>
<tr>
<td>Feb 2010</td>
<td>BMW UK</td>
<td>GBP 3bn</td>
<td>run-off</td>
<td>indemnity</td>
<td>DB Paternoster</td>
</tr>
<tr>
<td>Dec 2010</td>
<td>Swiss Re (Kortis bond)</td>
<td>USD 50m</td>
<td>8</td>
<td>indexed</td>
<td>ILS funds</td>
</tr>
<tr>
<td>Feb 2011</td>
<td>Pall Pension Fund</td>
<td>GBP 70m</td>
<td>10</td>
<td>indexed</td>
<td>JPM</td>
</tr>
</tbody>
</table>
LONGEVITY SWAPS

Main issues
- Dodd-Frank, EMIR bespoke solutions
- counterparty risk is bilateral
- longevity risk premium meaningless if MTM/collateral flows ignored

Reference model
- IRS market: bilaterally collateralized, cash collateral in over 90% of the cases
- collateral thresholds based on mark-to-model, mortality experience, credit ratings, CDS spreads, etc.

Questions
- collateral vs. capital
- pricing/valuation with bilateral default risk and collateral
- longevity swaps vs. IRSSs
BESPOKE SOLUTIONS

Stylized example: single payment at time T
- notional n, fixed payment $\bar{p} \in (0, 1)$
- variable payment S_T (realized survival rate)
BESPOKE SOLUTIONS

Stylized example: single payment at time T

- notional n, fixed payment $\bar{p} \in (0, 1)$
- variable payment S_T (realized survival rate)

\[V_0 = nE^Q \left[\exp \left(- \int_0^T r_t dt \right) (S_T - \bar{p}) \right] \]
BESPOKE SOLUTIONS

Stylized example: single payment at time T

- notional n, fixed payment $\bar{p} \in (0, 1)$
- variable payment S_T (realized survival rate)

![Diagram: Hedger (H) to Hedge Supplier (HS) with formulas $n \times \bar{p}$ and $n \times S_T$]

Longevity swap rate

$$\bar{p} = E^Q[S_T] + \frac{\text{Cov}^Q\left(\exp\left(-\int_0^T r_t dt\right), S_T\right)}{E^Q\left[\exp\left(-\int_0^T r_t dt\right)\right]}$$
BESPOKE SOLUTIONS

Stylized example: single payment at time T

- notional n, fixed payment $\bar{p} \in (0, 1)$
- variable payment S_T (realized survival rate)

Longevity swap rate (r, S uncorrelated)

$$\bar{p} = E^Q [S_T] + 0$$
BESPOKE SOLUTIONS

Stylized example: single payment at time T

- notional n, fixed payment $p \in (0, 1)$
- variable payment S_T (realized survival rate)

Longevity swap rate (r, S uncorrelated)

\[
\bar{p} = E^Q [S_T] + 0
\]

Useful baseline case $\bar{p} = E^P [S_T]$ (best estimate).
BACKTESTING

UK-based hedger

- 10,000 individuals (England & Wales) aged 65 in 1980
- indemnity-based solution over 1980 – 2005
- interest rate risk hedged away

Realized cashflows

- population evolves as in Human Mortality Database (HMD)
- cashflow hedge in operation: \((realized\ rate) - (swap\ rate)\)

Marking to market/model (MTM)

- swap curves given by Lee-Carter forecasts based on most recent HMD data available
CASHFLOWS AND MTM
HEDGE SUPPLIER’S CREDIT DETERIORATION
HEDGE SUPPLIER’S CREDIT DETERIORATION
VALUATION

Hedger’s viewpoint, cash collateral

- default intensities \((\lambda^h_t)_{t \geq 0}, (\lambda^{hs}_t)_{t \geq 0}\)
- collateral fraction, \((c_t)_{t \geq 0}\), of market value, \((V_t)_{t \geq 0}\)
- \(c_t V_t\) amount held (if pos.) or posted (if neg.)
VALUATION

Hedger’s viewpoint, cash collateral

- default intensities \((\lambda^h_t)_{t \geq 0}, (\lambda^{hs}_t)_{t \geq 0}\)
- collateral fraction, \((c_t)_{t \geq 0}\), of market value, \((V_t)_{t \geq 0}\)
- \(c_t V_t\) amount \textit{held} (if pos.) or \textit{posted} (if neg.)
- collateral cost, \((\delta_t)_{t \geq 0}\)
 - \textbf{funding} cost
 - \textbf{opportunity} cost of buying/selling additional longevity protection
- asymmetry in \(c, \delta\) possible
VALUATION

Hedger’s viewpoint, cash collateral

- default intensities \((\lambda^h_t)_{t \geq 0}, (\lambda^{hs}_t)_{t \geq 0}\)
- collateral fraction, \((c_t)_{t \geq 0}\), of market value, \((V_t)_{t \geq 0}\)
- \(c_t V_t\) amount held (if pos.) or posted (if neg.)
- collateral cost, \((\delta_t)_{t \geq 0}\)
 - * funding cost
 - ** opportunity cost of buying/selling additional longevity protection
- asymmetry in \(c, \delta\) possible
- swap market value (Biffis/al., 2011; Duffie/Huang, 1996; Brigo/al., 2008-)

\[
V_0 = \mathbb{E}^Q \left[\exp \left(- \int_0^T (r_t + \Gamma_t) \, dt \right) (S_T - \bar{p}^c) \right]
\]

\[
\Gamma_t := \begin{cases}
(1 - c^h_t)\lambda^h_t - \delta^h_t c^h_t & \text{if } V_t < 0 \\
(1 - c^{hs}_t)\lambda^{hs}_t - \delta^{hs}_t c^{hs}_t & \text{if } V_t \geq 0
\end{cases}
\]
FULLY FLEDGED CALIBRATION

Building blocks

- two-factor short rate model
- TED spread for λ^{hs}
- $\lambda^h = \lambda^{hs} + \Delta$, $\Delta > 0$
- mortality: Lee-Carter mortality model
- implied IRS collateral costs (Johannes/Sunadersan 2007)

Two approaches to collateral net costs δ^h, δ^{hs}

1. funding costs associated with collateral flows
2. simulate Solvency II capital charges (1-year 99.5% VaR) accruing from representative longevity-linked liability, then use $\text{Libor} + 6\%$ or 12% for cost of capital charges
LONGEVITY SWAP MARGINS

Swap margins, $\frac{\bar{P}^c}{E^P[S_T]} - 1$, against Lee-Carter mortality improvements quantiles.
LONGEVITY SWAP MARGINS

Swap margins, \(\frac{\bar{D}^c}{E^P[ST]} - 1 \), against Lee-Carter mortality improvements quantiles.
LONGEVITY SWAP MARGINS

Swap margins, $\frac{P^c}{E^P[S_T]} - 1$, against Lee-Carter mortality improvements quantiles.
LONGEVITY SWAP MARGINS

Swap margins, \(\frac{\bar{P}^c}{E^P[S_T]} - 1 \), against Lee-Carter mortality improvements quantiles.
LONGEVITY SWAP SPREADS

Swap spreads (basis points), $\bar{p}_T^c - E^P[S_T]$

<table>
<thead>
<tr>
<th>$\lambda^h = \lambda^{h,hs} + \Delta$</th>
<th>Maturity</th>
<th>$c^h = 0$</th>
<th>$c^{hs} = 0$</th>
<th>$c^h = 1$</th>
<th>$c^{hs} = 0$</th>
<th>$c^h = 1$</th>
<th>$c^{hs} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta^{h,hs} = \delta$</td>
<td>(yrs)</td>
<td>(bps)</td>
<td>(bps)</td>
<td>(bps)</td>
<td>(bps)</td>
<td>(bps)</td>
<td>(bps)</td>
</tr>
<tr>
<td>$\Delta = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.03</td>
<td>11.34</td>
<td>-11.76</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.11</td>
<td>19.93</td>
<td>-17.94</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.50</td>
<td>21.25</td>
<td>-18.35</td>
<td>1.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta = 100$ bps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.45</td>
<td>16.79</td>
<td>-17.29</td>
<td>-5.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10.16</td>
<td>28.95</td>
<td>-27.08</td>
<td>-8.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>10.96</td>
<td>30.75</td>
<td>-27.76</td>
<td>-9.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta = 200$ bps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11.30</td>
<td>22.29</td>
<td>-22.90</td>
<td>-11.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19.26</td>
<td>38.06</td>
<td>-36.16</td>
<td>-17.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>19.46</td>
<td>40.27</td>
<td>-37.02</td>
<td>-18.38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPARISON WITH THE IRS MARKET

<table>
<thead>
<tr>
<th>Maturity payment (yrs)</th>
<th>$c^h = 0$</th>
<th>$c^h = 1$</th>
<th>$c^{hs} = 0$</th>
<th>$c^{hs} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-7.96</td>
<td>-44.97</td>
<td>-52.86</td>
<td>11.34</td>
</tr>
<tr>
<td>20</td>
<td>-12.68</td>
<td>-42.64</td>
<td>-56.22</td>
<td>19.93</td>
</tr>
<tr>
<td>25</td>
<td>-17.94</td>
<td>-40.98</td>
<td>-58.92</td>
<td>21.25</td>
</tr>
</tbody>
</table>

$\Delta = 0$

<table>
<thead>
<tr>
<th>Maturity payment (yrs)</th>
<th>$c^h = 0$</th>
<th>$c^h = 1$</th>
<th>$c^{hs} = 0$</th>
<th>$c^{hs} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-8.00</td>
<td>-67.87</td>
<td>-75.23</td>
<td>16.79</td>
</tr>
<tr>
<td>20</td>
<td>-12.65</td>
<td>-63.84</td>
<td>-77.42</td>
<td>28.95</td>
</tr>
<tr>
<td>25</td>
<td>-17.65</td>
<td>-60.63</td>
<td>-77.64</td>
<td>30.75</td>
</tr>
</tbody>
</table>

$\Delta = 100$ bps

<table>
<thead>
<tr>
<th>Maturity payment (yrs)</th>
<th>$c^h = 0$</th>
<th>$c^h = 1$</th>
<th>$c^{hs} = 0$</th>
<th>$c^{hs} = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-8.00</td>
<td>-67.87</td>
<td>-75.23</td>
<td>16.79</td>
</tr>
<tr>
<td>20</td>
<td>-12.65</td>
<td>-63.84</td>
<td>-77.42</td>
<td>28.95</td>
</tr>
<tr>
<td>25</td>
<td>-17.65</td>
<td>-60.63</td>
<td>-77.64</td>
<td>30.75</td>
</tr>
</tbody>
</table>
AGENDA

1 Motivation

2 Cox setting

3 Measure changes

4 Examples

5 Case study: Longevity swaps

6 Conclusion
CONCLUSION

Stochastic mortality models
- make sure (implicit) assumptions meet your needs
- consistency across applications is important and can be achieved

Mortality risk premia
- “standard” assumptions should not be taken at face value
- you can get a lot of mileage from restrictive models
- endogenizing risk premia through real world frictions (e.g., signalling, funding costs) is likely to require much richer structure than usually assumed
CONCLUSION

Stochastic mortality models

- make sure (implicit) assumptions meet your needs
- consistency across applications is important and can be achieved

Mortality risk premia

- “standard” assumptions should not be taken at face value
- you can get a lot of mileage from restrictive models
- endogenizing risk premia through real world frictions (e.g., signalling, funding costs) is likely to require much richer structure than usually assumed

More details and references available in (see www.ssrn.com)

- Biffis/Denuit/Devolder (2010), Stochastic mortality under measure changes
- Biffis/Blake (2010a), Securitizing and tranching longevity exposures
- Biffis/Blake/Pitotti/Sun (2011), The cost of counterparty risk and collateralization in longevity swaps
- Biffis/Blake (2011), Informed intermediation of longevity exposures
THANK YOU FOR YOUR ATTENTION