ROBUST HEDGING OF LONGEVITY RISK

Andrew Cairns
Heriot-Watt University,
and The Maxwell Institute, Edinburgh
Hannover, 2012
Plan

- Intro + model
- Recalibration risk – introduction
- Robustness questions – index hedging
- Are some hedging instruments more robust than others?
- Static Delta and Nuga hedging
- Discussion
Background

- Annuity providers and pension plans
- Exposure to longevity risk
 - systematic risk (underlying mortality rates)
 - binomial risk (lives)
 - concentration risk (amounts)
- Alongside: interest rate risk, equity risk
Hedging problem 1

Annuity provider seeks to hedge its exposure to longevity risk

- Large cohort aged 65 at time 0
- Equal, level annuities payable for life
- \(S(t, 65) \) = proportion still alive at \(t \)
- \(PV = \sum_{t=1}^{\infty} e^{-rt} S(t, 65) \)
- Objective: Hedge longevity risk in \(PV \)
Hedging problem 2

Annuity provider seeks to hedge its exposure to longevity risk

- Large cohort aged 65 at time 0
- Equal, level annuities payable for life
- \(S(t, 65) = \) proportion still alive at \(t \)
- Deficit \(D(t) = MCV_{Liabs}(t) - MCV_{Assets}(t) \)
- Objective: Hedge longevity risk in \(D(T) \)
 e.g. \(T = 1 \) under Solvency II
Hedging problem 3

Pension plan

- Cohort now aged 55
- Plan will buy annuities at age 65
- Objective: hedge the longevity risk in the annuity price
Options for hedging

- Customised hedges:
 - e.g. longevity swap
 - floating leg linked to OWN cashflows
 - indemnification

- Index-based hedges:
 - Standardised contracts
 - e.g. Linked to a national index
Focus of this talk

Index-based hedges

- Customised longevity swaps only available to very large pension plans
- Index-based hedges
 - smaller schemes
 - better value for money for large plans ???
- Quantity of hedging instrument
 Hedge effectiveness
 Price

How confident are we in these quantities? ⇒ ROBUSTNESS
Simple example

- Static value hedge: $t = 0 \rightarrow T$
- $a_k(T, x) = \text{population } k \text{ annuity value at } T$
- Liability value $L(T) = a_2(T, 65)$
- Hedging instrument: deferred longevity swap

$$H(T) = a_k(T, x) - \hat{a}_k^{\text{fxd}}(0, T, x)$$

$$\hat{a}_k^{\text{fxd}}(0, T, x) = \text{value at } T \text{ of swap fixed leg}$$

- $k = 2 \text{ (CMI)} \Rightarrow \text{CUSTOMISED hedge}$
- $k = 1 \text{ (E&W)} \Rightarrow \text{INDEX hedge}$
Hedging: basic idea

- $L = \text{liability value}$
- $H = \text{value of hedging instrument}$

Objective: minimise $\text{Var}(\text{deficit}) = \text{Var}(L + hH)$

\Rightarrow hedge ratio, $h = -\frac{\text{Cov}(L, H)}{\text{Var}(H)} = -\rho \frac{\text{S.D.}(L)}{\text{S.D.}(H)}$

Hedge effectiveness $= 1 - \frac{\text{Var}(L + hH)}{\text{Var}(L)} = \rho^2$

More general: multiple assets

\Rightarrow minimise $\text{Var}(L + h_1H_1 + \ldots + h_nH_n)$
Simple example: APC model (Cairns et al., 2011a)

\[m_k(t, x) = \text{population } k \text{ death rate} \]

\[\log m_k(t, x) = \beta^{(k)}(x) + \kappa^{(k)}(t) + \gamma^{(k)}(t - x) \]

\(\beta^{(1)}(x), \beta^{(2)}(x) \) population 1 and 2 age effects

\(\kappa^{(1)}(t), \kappa^{(2)}(t) \) period effects; mean reverting spread

\(\gamma^{(1)}(c), \gamma^{(2)}(c) \) cohort effects

Key: \(\nu_k = \kappa^{(1)}(t), \kappa^{(2)}(t) \) long term trend
Realism: valuation model \neq simulation model

- (Re-)calibration using data up to $T \Rightarrow$ realistic!
- Valuers just observe historical mortality plus one future sample path of mortality from 0 to T
 \[\Rightarrow \text{do not know the “true” simulation/true model} \]
- Using true model \Rightarrow too optimistic (??)
 c.f. Black-Scholes
- Valuation model $+$ calibration window \Rightarrow Knightian Uncertainty
Recalibration risk – example (random walk)

- You will recalibrate at T
- Recalibration depends on as yet unknown experience from 0 to T
- Recalibration depends on length of lookback window
Hedge Effectiveness: (Cairns et al., 2011b; Longevity 6)

Key conclusions: index-based hedging

- Recalibration \Rightarrow risk \uparrow

- BUT hedge effectiveness also \uparrow

WHY?

Additional trend risk is common to both populations.

$$a_k(T, x) \approx f(\beta^{(k)}_x, \kappa^{(k)}_T, \gamma^{(k)}_{T-x+1}, \nu_\kappa)$$
Robustness

How robust are estimates of:

- Optimal hedge ratios h_1, \ldots, h_n
- Hedge effectiveness
- Initial hedge instrument prices $\pi(H_1), \ldots, \pi(H_n)$

... relative to ...
Robustness

How robust are key quantities relative to

- Treatment of parameter risk
- Treatment of population basis risk
- Valuation model: recalibration risk
- Poisson risk
- Use of latest EW data
- Simulation model + calibration
Modelling Variants

- PC: Full parameter certainty (PC);
 Valuation Model NOT recalibrated in 2015

- PC-R: As full PC
 Except: Valuation Model recalibrated in 2015

- PU: Full parameter uncertainty with recalibration

- PU-Poi: Full PU with recalibration + Poisson risk
Hedging options

- Recall: Liability, $L = a_2(T, 65)$ (CMI)

- Hedging instrument (ref England & Wales):
 - $H = a_1(T, x) - a_1^{\text{fxd}}(0, T, x)$

 OR

 - q-Forward maturing at T (www.LLMA.com)

 $H = q_1(T, x) - q_1^F(0, T, x)$

- Both cases: for a range of reference ages x
Robustness of Hedge Ratios

PC \rightarrow PC-R not robust; PC-R \rightarrow PU robust
deferred longevity swaps better than maturing q-Forwards
Robustness relative to recalibration window, W

Maturing q-forwards

Deferred Longevity Swaps

Deferred longevity swaps better than maturing q-forwards
Robustness relative to recalibration window, W

Longevity swaps are more robust:

- Liability, L, and longevity swap, H, depend on
 - $\kappa^{(1)}_T$ and ν_κ
 - BUT in differing proportions \Rightarrow single H not robust

- Maturing q-Forward depends on $\kappa^{(1)}_T$ only
 \Rightarrow even less robust

- Possible market solution:
 $$(0, T + U, x) \quad q$-Forward, cash settled at $T$$
Robustness relative to recalibration window, W

Hedging with Cash-Settled, Long-Maturity q-Forwards

$T + U$ q-Forward is cash settled at time T

\Rightarrow value depends on $\kappa_t^{(1)}$ and ν_κ
Robustness relative to recalibration window, W

- If we know W, then ν_κ linear in $\kappa_T^{(1)}$
 \Rightarrow one hedging instrument sufficient

- If W is not known
 or, ν_κ determined by other methods
 \Rightarrow two hedging instruments are required
 \Rightarrow Delta and "Nuga" hedging
Delta and Nuga Hedging

Recall: \(a_k(T, x) \approx f(\beta_{[x]}^{(k)}, \kappa_T^{(k)}, \gamma_{T-x+1}^{(k)}, \nu_{\kappa}) \)

Liability: \(L = a_2(T, x) \).

Hedge instruments:

\[
H_1 = q_1(T, x_1) - q_1^{\text{fxd}}(0, T, x_1) \quad \to h_1 \text{ units}
\]
\[
H_2 = q_1(T + U, x_2) - q_1^{\text{fxd}}(0, T + U, x_2) \quad \to h_2 \text{ units}
\]

\((H_2 \text{ cash settled at } T) \)
Delta and Nuga hedging ⇒ require

Deltas: \[\alpha \frac{\partial L}{\partial \kappa^{(2)}} = -h_1 \frac{\partial H_1}{\partial \kappa^{(1)}} - h_2 \frac{\partial H_2}{\partial \kappa^{(1)}} \]

and Nugas: \[\frac{\partial L}{\partial \nu_\kappa} = -h_1 \frac{\partial H_1}{\partial \nu_\kappa} - h_2 \frac{\partial H_2}{\partial \nu_\kappa} \]

where \(\alpha = \text{Cov}(\kappa_T^{(1)}, \kappa_T^{(2)}) / \text{Var}(\kappa_T^{(1)}) \).

Concept:

same idea as Vega hedging in equity derivatives

– hedging against changes in a parameter that is supposed to be constant.
Numerical example: \(L = a_2(T, 65), T = 10 \)

Four strategies:

A: No hedging

B: \(H_1 \) only; \(h_1 \) optimal for \(W = 20 \)

C: \(H_1 \) only; \(h_1 \) optimal for \(W = 35 \)

D: \(H_1 \) and \(H_2 \); Delta and Nuga hedging
Numerical example: \(L = a_2(T, 65), T = 10 \)

\[
q\cdot F(T, 64) \quad q\cdot F(T + T, 74)
\]

<table>
<thead>
<tr>
<th>Strategy</th>
<th>(h_1)</th>
<th>(h_2)</th>
<th>(Var(\text{Deficit}))</th>
<th>Hedge Eff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W = 20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0.3481</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>500.7</td>
<td>0</td>
<td>0.03435</td>
<td>0.9013</td>
</tr>
<tr>
<td>C</td>
<td>389.0</td>
<td>0</td>
<td>0.04996</td>
<td>0.8565</td>
</tr>
<tr>
<td>D</td>
<td>-279.6</td>
<td>256.4</td>
<td>0.03797</td>
<td>0.8909</td>
</tr>
<tr>
<td>(W = 35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0.2233</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>500.7</td>
<td>0</td>
<td>0.04953</td>
<td>0.7782</td>
</tr>
<tr>
<td>C</td>
<td>389.0</td>
<td>0</td>
<td>0.03392</td>
<td>0.8481</td>
</tr>
<tr>
<td>D</td>
<td>-279.6</td>
<td>256.4</td>
<td>0.03493</td>
<td>0.8436</td>
</tr>
</tbody>
</table>
Numerical example: discussion

- Nonlinearities $\Rightarrow D < B$ instead of $D = B$

- BUT

 - $W = 20 \Rightarrow$

 D is nearly optimal

 C is much worse

 - $W = 35 \Rightarrow$

 D is nearly optimal

 B is much worse
Robustness relative to other factors

Results are robust relative to:

- inclusion of parameter uncertainty in $\beta_{x}^{(k)}$, $\kappa_{t}^{(k)}$, $\gamma_{c}^{(k)}$
- pension plan’s own small-population Poisson risk
- index population: EW-size Poisson risk, maybe smaller
- CMI data up to 2005 + EW data up to 2005
 versus
 CMI data up to 2005 + EW data up to 2008
Conclusions

Robust hedging requires *inclusion* of

- Recalibration risk (Nuga)
- Careful treatment of recalibration window
- Long-dated hedging instruments to handle *Nuga* risk

Results appear to be robust relative to

- Poisson risk
- Parameter uncertainty (other than recalibration risk)
- Treatment of latest data

E: A.Cairns@ma.hw.ac.uk
W: www.ma.hw.ac.uk/∼andrewc